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The contributions of coding mutations to tumorigenesis are 
relatively well known; however, little is known about somatic 
alterations in noncoding DNA. Here we describe GECCO 
(Genomic Enrichment Computational Clustering Operation) 
to analyze somatic noncoding alterations in 308 pancreatic 
ductal adenocarcinomas (PDAs) and identify commonly mutated 
regulatory regions. We find recurrent noncoding mutations to 
be enriched in PDA pathways, including axon guidance and cell 
adhesion, and newly identified processes, including transcription 
and homeobox genes. We identified mutations in protein binding 
sites correlating with differential expression of proximal genes 
and experimentally validated effects of mutations on expression. 
We developed an expression modulation score that quantifies the 
strength of gene regulation imposed by each class of regulatory 
elements, and found the strongest elements were most frequently 
mutated, suggesting a selective advantage. Our detailed single-
cancer analysis of noncoding alterations identifies regulatory 
mutations as candidates for diagnostic and prognostic markers, 
and suggests new mechanisms for tumor evolution.

PDA is a highly lethal malignancy with a 5-year survival rate of 6%, 
due to therapy resistance and late stage at diagnosis1. A detailed under-
standing of the molecular alterations underlying PDA is required to 
uncover mechanisms of tumorigenesis and enable development of 
effective therapies. Exome sequencing efforts have identified genes 
(KRAS, TP53, CDKN2A, SMAD4) and pathways (Wnt/Notch, trans-
forming growth factor-β (TGF-β), axon guidance, cell adhesion) 
important for PDA progression2,3. However, the exome comprises less 
than 2% of the human genome. Whole-genome sequencing (WGS) 
analyses have uncovered an average somatic mutation rate of 2.64 
mutations per Mb in PDA, indicating that PDA tumors often carry 
thousands of mutations, most of which are located in noncoding 
regions and are completely uncharacterized4.

Relevance of noncoding mutations (NCMs) to cancer development 
was previously established with the discovery of highly recurrent muta-
tions in the telomerase reverse transcriptase (TERT) promoter in  
sporadic and familial melanoma5,6. These mutations create binding 

motifs for transcription factors in the ETS family and lead to increased 
TERT transcriptional activity5,7. Subsequent reports identified TERT 
promoter mutations in a wide-range of human tumors, including gliob-
lastoma and hepatocellular carcinoma8. TERT promoter mutations are 
the most common genetic alterations in bladder cancer and correlate 
with recurrence and survival, demonstrating the potential of NCMs to 
act as clinical biomarkers9. NCMs have also been demonstrated to drive 
tumor progression from intergenic elements. Somatic mutations in a 
subset of T-cell acute lymphoblastic leukemia cases generate binding 
sites for the MYB transcription factor, creating a superenhancer driving 
expression of the TAL1 oncogene10. Recent analyses have pooled WGS 
data from multiple cancer types and hundreds of patients, identifying 
recurrent mutations in regulatory elements of several genes, including 
TERT11–15. While multi-cancer studies can identify ubiquitous cancer 
variants, in-depth analysis of individual cancer subtypes is required 
for uncovering disease-specific alterations16.

To detect somatic NCMs in PDA, we developed a computational  
pipeline to analyze WGS data for 308 PDA tumors from the 
International Cancer Genome Consortium (ICGC)17. We used the 
FunSeq2 pipeline18,19 to initiate prioritization of noncoding muta-
tions, which identified hundreds of thousands of noncoding somatic 
mutations with potential functional implications. To discriminate 
among this large number of NCMs, we developed GECCO (Genomic 
Enrichment Computational Clustering Operation) to identify can-
didate NCMs that drive differential gene expression. This approach 
reduced the number of putative gene-proximal regulatory regions by 
three orders of magnitude to a set of high-confidence calls.

Using GECCO, we identify recurrent mutations and interrogate 
expression data from matched tumors to find variants associated  
with changes in mRNA levels. We find significant differential expres-
sion of 16 genes associated with NCMs. For two of these genes, 
PTPRN2 and SLC12A8, we uncover previously unidentified clinical 
relevance in PDA. Specifically, we find that PTPRN2 expression level 
is an independent prognostic variable for overall patient survival. 
Pathway analysis of the genes associated with recurrent NCMs identi-
fies known and new PDA pathways. Furthermore, we find enrichment 
for mutations in specific regulatory regions, suggesting that NCMs 
may be acted upon by selection during tumor formation. Our analysis 
provides a model for tumor evolution via the formation and selection 
for alterations in noncoding regulatory elements of specific genes as 
a means of controlling specific biological pathways.
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RESULTS
To analyze NCMs in PDA, we selected all 405 patients with WGS data 
from the ICGC Pancreatic Cancer Genome Project. We determined 
the total number of somatic single nucleotide variants (SNVs) and 
small insertions or deletions (indels) for each patient and retained 
those with mutation load within 3 s.d. of the mean (mean = 7,937; 
range = 1–440,471) to exclude the hypermutated tumors with unlo-
calized replication defects (Fig. 1a and Supplementary Fig. 1). In 
total, 2,248,158 SNVs and indels from 308 PDA patient samples were 
retained for analysis.

General features of GECCO
To discover the effect of noncoding mutations on PDA progression and 
patient outcome, we developed the computational pipeline GECCO 
(Fig. 2). GECCO begins by selecting noncoding mutations falling 
within Encyclopedia of DNA Elements20 (ENCODE)-defined transcrip-
tion factor binding peaks—herein referred to as cis-regulatory regions 
(CRRs), as not all proteins profiled are transcription factors and may be 
part of larger regulatory complexes. It then proceeds with downstream 
processing in two parallel modules. We define a “CRR class” to be all 
CRRs that are bound by the same DNA-binding protein (for example, 
CTBP2, with 1,781 CRRs across the genome) or proteins involved in 
DNA-binding complexes (for example, SUZ12, with 1,618 CRRs across 
the genome). The first module of GECCO associates NCMs with proxi-
mal genes and uses permutation testing to identify highly mutated clus-
ters that correlate significantly with changes in gene expression. The 
second module calculates the mutation rate of each CRR to determine 
which specific CRR classes are more commonly mutated in PDA.

In the second module, GECCO computes an expression modula-
tion score (EMS) using coupled gene expression data to determine the 
regulatory impact of each CRR class. The EMS can be used to generate 
a rank-sorted list of CRRs based on the strength of their relative gene 
regulatory impact (such that the strongest activators and repressors 
fall at either end of the list). Taken together, the results generated from 
GECCO provide information on the impact of NCMs on the expres-
sion level of individual genes and identify potential driver transcrip-
tion factors. Finally, GECCO merges the results of both modules to 
perform pathway and clinical survival analysis, allowing insights into 
PDA biology and patterns of somatic mutations in cancer.

Prioritization of noncoding mutations
We first identified NCMs in the exact same genomic position in multiple 
patients and removed common human variants (minor allele frequency 
> 5% in the 1000 Genomes Project phase I) (Supplementary Table 1). 
This identified several variants reaching over 2% incidence (n ≥ 7 of 
308 patients) in the patient cohort (Supplementary Table 1). Among 
the 11 genes associated with these variants, 6 have been implicated in 
tumorigenesis: WASF3 (ref. 21), BNC2 (ref. 22), ELMO1 (ref. 23), GPR98 
(ref. 24), PDE3B (ref. 25) and SOX5 (ref. 26). Notably, 10 of 11 of these 
mutations were found in introns. However, none of the exactly recurrent 
mutations disrupted, or created, transcription-factor-binding motifs (as 
defined by the JASPAR transcription factor binding profile database27) 
or fell within known regulatory elements. This analysis is consistent with 
several pan-cancer analyses that found few exactly recurrent mutations 
outside the well-characterized TERT promoter mutations11,12.

We extended this analysis by prioritizing NCMs by their association with 
functional annotations and clustering within regulatory elements. We used 
the FunSeq2 computational pipeline18,19 as a high-level filter to remove 
common variants and identify putative somatic regulatory mutations  
with functional impact. One important benefit of this approach is that it 
relies on functional information and thus drastically reduces any biases 

resulting from inhomogeneous mutation rates across the genome. This 
initial round of filtering identified 301,596 potential somatic drivers 
across all 308 patients (mean = 1,988; range = 203–17,902) (Fig. 1b); 
264,488 of the somatic NCMs fell within ENCODE-defined transcrip-
tion factor-binding peaks, with most of the remaining mutations within 
enhancers (19,608) or DNase I hypersensitive sites (14,572) (Fig. 1b). 
We focused our analysis on the 264,488 NCMs within the ENCODE-
defined CRRs. There was a direct correlation between CRR mutation 
rate and total SNVs (Fig. 1c). In contrast, we observed no correlations 
between CRR mutation rate and coding mutations in KRAS, TP53, 
CDKN2A, SMAD4 or ARID1A (Supplementary Figs. 2 and 3).

Analysis of cis-regulatory mutations
Starting with 264,488 candidate mutations, we used GECCO to focus 
our analysis on CRRs within 2 kb of each gene (many of which overlap 
promoters), seeking to identify clusters of mutations in CRRs that 

c

b FunSeq variants in pancreatic ductal adenocarcinoma (n = 308)

Variant class Total

Transcription factor binding peak/CRR 264,488
Enhancer 19,608
DNase I hypersensitive site 14,572
Pseudogene 1,632
lincRNA 1,104
Transcription factor motif within peak 135
Miscellaneous RNA 24
miRNA 19
snRNA 6
snoRNA 4
rRNA 4

a

T
ot

al
 S

N
V

s 
(×

1,
00

0)

Patient

C
R

R
 m

ut
at

io
ns

 (
×

1,
00

0)

Patient

C
R

R
/to

ta
l m

ut
at

io
ns

 (
no

rm
al

iz
ed

)

70

60

50

40

30

20

10

8
2.0

1.5

1.0

0.5

0

6

4

2

0

0

Figure 1 Identification of recurrent noncoding mutations in PDA. (a) The 
total number of SNVs was plotted for each patient. (b) FunSeq2 was used 
to detect and characterize putative somatic noncoding mutations from 
308 PDA whole-genome sequences. Mutation counts for each functional 
category are displayed. miRNA, microRNA; snRNA, small nuclear RNA; 
snoRNA, small nucleolar RNA. (c) The number of cis-regulatory region 
(CRR) mutations (gray bars) and CRR/total SNV ratio (black points) were 
plotted for each patient.
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directly affect gene expression (Fig. 3a). The requirement to be within 
2 kb of a gene excludes many distal enhancer regions but increases 
the likelihood that a given CRR topologically associates with, and 
therefore regulates, the expression of its proximal gene. The most fre-
quently mutated CRR (17 patients, 5.52% of cohort) was in a TCF12-
binding region proximal to LHX8 (LIM homeobox 8) (Fig. 3a).  
LHX8, a homeobox gene and regulator of craniofacial development, 
modulates the Hedgehog pathway, a known regulator of PDA patho-
genesis28. We observed a cluster of mutations in an E2F1-binding 
region in proximity to BMP7 (bone morphogenetic protein 7). BMP7 
is a TGF-β family member, with pleiotropic roles in development and 
cancer progression29. GECCO did not detect any recurrent variants 
in the TERT promoter, in concordance with a previous study that 
failed to detect TERT promoter mutations in 24 PDA samples8. To 
determine whether the identified NCMs were within active promot-
ers or enhancers in pancreatic cells, we interrogated histone H3 Lys4 
trimethylation (H3K4me3) and Lys27 acetylation (H3K27ac) regions 
from ENCODE in pancreatic-carcinoma-derived PANC-1 cells. In 
PANC-1 cells, 37.6% of all transcription factor-binding peaks were 
found within active predicted promoters or enhancers. In contrast, 
58.9% of recurrent NCMs (>5 patients) were found within at least 
one predicted active promoter or enhancer. The CRRs with recurrent 
NCMs did not differ significantly in size from those lacking recurrent 
NCMs. Therefore, recurrent NCMs are enriched in transcriptionally 
active regions of the genome in pancreatic cancer cells.

We identified clusters of NCMs in regulatory regions of long inter-
genic non-protein coding RNAs (lncRNAs), including the oncogenic 

lncRNA metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1)30, and in microRNAs, including the oncogenic miR-21 
(ref. 31) (Fig. 3a). To infer functional consequences of the most recur-
rently mutated gene-proximal CRRs, we used data from a published 
in vitro short hairpin RNA (shRNA) screen, which monitored sur-
vival in 102 cell lines, of which 13 were pancreatic cancer-derived32. 
Knockdown of 6 of the top 15 genes (LHX8, LMX1B, PAX6, DMRTA2, 
VAX2 and CDH15) was found to decrease cancer cell survival, provid-
ing potential functional relevance for these genes as cancer drivers  
(Fig. 3a). Knockdown of two genes, LMX1B and CDH15, led to  
selective killing of PDA cell lines among all cancers, suggesting  
tumor-specific vulnerabilities.

To control for variable CRR size, we calculated a mutational fre-
quency for each cluster harboring at least five mutations, defined as 
the number of mutations across all patients divided by the number of 
nucleotides spanning the cluster (Fig. 3b). The highest scoring result 
was an exactly recurrent mutation in the same genomic position in five 
patients, flanking the acyl-CoA oxidase-like gene ACOXL, a known 
susceptibility locus for chronic lymphocytic leukemia33. This mutation 
was not found to be within a known transcription-factor-binding site 
as defined by JASPAR. We also identified a cluster of five mutations 
within 19 nucleotides proximal to the neuronal cell adhesion gene 
NRXN3, a regulator of glioma cell proliferation and migration34.

While multi-cancer recurrent NCMs have been described11,12, we 
lack an understanding of their mutational patterns. For example, it 
is unknown whether NCMs cluster near the same genes that show 
recurrent coding mutations for a given disease. Therefore, we looked 
for clusters of NCMs in association with known PDA genes present 
in at least five patients (Supplementary Table 2). We did not detect 
any recurrent NCMs in CRRs within 2 kb of KRAS, TP53, CDKN2A, 
SMAD4, ARID1A or MLL3, in addition to 24 of 26 other PDA genes 
identified from previous whole-exome analyses (Supplementary 
Table 2)2,3. This result is consistent with defects in protein function, 
rather than alterations in expression, in the pathogenesis of these 
PDA genes.

Correlations with clinical outcomes from pathway analysis
Pathway analysis of recurrently mutated PDA genes has been used to 
identify signaling networks and biological processes underlying disease 
pathogenesis2,3. To detect patterns in NCM localization at the pathway 
level, we used the Database for Annotation, Visualization and Integrated 
Discovery (DAVID), a functional annotation enrichment algorithm for 
large-scale biological data sets35. Pathway analysis of genes near CRRs 
containing clusters of mutations (>5 patients) identified significant 
enrichment of several gene families and regulatory processes, includ-
ing transcriptional regulation, homeobox genes, axon guidance, cell 
adhesion and Wnt signaling (Fig. 3c). The involvement of three of these 
pathways (axon guidance, cell adhesion, Wnt signaling) in PDA has been 
identified from previous exome sequencing studies2,3. Furthermore, sev-
eral homeobox genes and transcription factors have been implicated in 
PDA pathogenesis, including PAX6 (ref. 36), HOXB2 (ref. 37), HOXB7 
(ref. 38) and RUNX3 (ref. 39). Therefore, NCMs display preferential 
patterns of localization in the PDA genome and, although not found 
near canonical PDA genes, may act through modulation of canoni-
cal PDA pathways. In addition, we uncover a previously unrecognized 
localization of NCMs near transcriptional regulators and homeobox 
genes, suggesting a role for these factors in PDA.

The availability of matched gene expression data from a large 
number (n = 96) of patient samples allowed association studies between 
specific clusters of mutations and changes in gene expression. For 
each of the 124,075 CRRs, we determined differential gene expression  

Input whole genome sequencing data
(1) Matched tumor-normal SNV calls

(2) RNA-seq expression calls

Pathway analysis
Patient survival analysis

FunSeq2
Prioritize noncoding regulatory variants

Use permutation testing
to identify CRRs

affecting expression

Associate recurrently
mutated CRRs

with flanking genes

Generate false discovery
rates

Normalize mutation
rates for GC content,
size and abundance

Determine mutation
rates for each

regulatory class

Compute expression
modulation scores

For each CRR variant For each CRR class

Figure 2 GECCO flowchart. GECCO uses noncoding somatic mutation calls 
from tumor WGS data to identify clusters of mutations within 2 kb of genes, 
including those that correlate with changes in gene expression. GECCO also 
calculates the mutation rate of gene regulatory regions and determines the 
strength of each regulatory region in terms of the effect on gene expression 
(EMS). These data can then be used for pathway analysis of genes proximal 
to noncoding clusters and genes downstream of specific regulatory regions. 
The gene lists can also be interrogated for patient survival analysis when 
coupled to outcome data for detection of clinically relevant interactions.
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between patients with mutations in a proximal CRR compared to 
patients without mutations. Using permutation testing, we identified 
NCMs that significantly modulated expression of their proximal gene 
and calculated their false discovery rates (FDRs; see Online Methods). 
Many of the genes with the greatest number of mutations (Fig. 3a) 
did not show significant changes in gene expression. However, this 
analysis yielded 16 NCMs associated with significant changes in  
gene expression (at least 3 patients, P < 0.05, FDR < 0.25) (Fig. 4a). 
Eight of the 16 NCMs were present in regions marked by H3K4me3 

and H3K27ac in PANC-1 cells. None of the statistically significant 
mutations were associated with increases in gene expression. Three of 
the genes with statistically significant decreases in expression (KCNQ1, 
IKZF1, TUSC7) have been implicated as tumor suppressors40,41, while 
two (PTPRN2, SNRPN) are frequently hypermethylated42,43. Next we 
looked for correlations between NCM-associated differential expres-
sion and clinical correlates in PDA. The small sample size precluded 
identification of specific NCMs associated with differences in patient 
outcome. Therefore, we looked for associations between expression 

Noncoding gene-proximal mutational clusters in PDA

CRR Nearest gene Patients (%) Gene name/protein function shRNA

TCF12 LHX8 17 (5.52%) LIM homeobox 8 Yes
JUND LINC01194 16 (5.19%) Long intergenic non-protein coding RNA NA
E2F1 BMP7 15 (4.87%) Bone morphogenetic protein 7 No
SUZ12 LHX8 15 (4.87%) LIM homeobox 8
WRNIP1 DUSP22 15 (4.87%) Dual specificity phosphatase 22 No
EP300 REREP3 14 (4.55%) Arginine-glutamic acid dipeptide (RE) repeats pseudogene 3 NA
SUZ12 LMX1B 14 (4.55%) LIM homeobox transcription factor Yes (P)
SUZ12 PAX6 14 (4.55%) Paired box 6, homeodomain Yes
TCF12 ZIC4 14 (4.55%) Zinc-finger family member 4 No
HDAC2 FANK1 14 (4.55%) Fibronectin type 3 and ankyrin repeat domains 1 No
FOXA1 REREP3 13 (4.22%) Arginine-glutamic acid dipeptide (RE) repeats pseudogene 3 NA
NFKB1, POU2F2 ST8SIA4 13 (4.22%) ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 No
SIN3A MIR21 13 (4.22%) MicroRNA21 NA
SIN3A VMP1 13 (4.22%) Vacuole membrane protein 1 No
SUZ12 DMRTA2 13 (4.22%) Doublesex-and Mab-3-related transcription factor A2 Yes
SUZ12 VAX2 13 (4.22%) Ventral anterior homeobox 2 Yes
SUZ12 ZIC4 13 (4.22%) Zinc-finger family member 4
BCLAF1 DUSP22 12 (3.90%) Dual specificity phosphatase 22
BCLAF1 MALAT1 12 (3.90%) Metastasis-associated lung adenocarcinoma transcript 1 (lncRNA) NA
BCLAF1 VMP1 12 (3.90%) Vacuole membrane protein 1
CDH2, JUND ZNF595 12 (3.90%) Zinc-finger transcription factor No
CDH2, JUND ZNF718 12 (3.90%) Zinc-finger transcription factor No
FOXA1 CDH15 12 (3.90%) Cadherin 15, type 1, M-cadherin Yes (P)
HDAC2 CDH8 12 (3.90%) Cadherin 8, type 2 No

Corrected for bounded gene-proximal CRR

CRR Nearest gene Patients (%) Cluster (bp) Mutation freq. (%) Gene name/protein function

BHLHE40 ACOXL 5 (1.62%) 1 >100 Acyl-CoA oxidase-like
RAD21 NRXN3 5 (1.62%) 19 26.32 Neurexin 3, neuronal cell adhesion
MAFK MACROD2 5 (1.62%) 55 9.09 O-acetyl-ADP-ribose deacetylase
EGR1 ARSD 5 (1.62%) 65 7.69 Arylsulfatase D
REST LILRA5 5 (1.62%) 81 6.17 Leukocyte immunoglobulin-like receptor
CEBPB PDE4B 6 (1.95%) 129 4.65 Phosphodiesterase 4B, cAMP-specific
NRF1 ANXA11 5 (1.62%) 134 3.73 Annexin A11
GATA2 XKR6 5 (1.62%) 145 3.45 Kell blood group complex-related
NR3C1 PXDN 7 (2.27%) 223 3.14 Phroxidasin Homolog
JUND NBPF25P 5 (1.62%) 162 3.09 Neuroblastoma breakpoint family, pseudogene
STAT3 SORCS1 6 (1.95%) 205 2.93 Sortilin-related VPS10 domain containing receptor
USF1 SCAI 5 (1.62%) 171 2.92 Suppressor of cancer cell invasion
BRF2 FRG1B 5 (1.62%) 186 2.69 FSHD region gene 1 family, lncRNA
CEBPB NRXN1 5 (1.62%) 227 2.20 Neurexin 1, neuronal cell adhesion
ZNF263 LINC00693 6 (1.95%) 283 2.12 Uncharacterized lncRNA

Pathways regulated by NCMs in pancreatic ductal adenocarcinoma

Regulatory process/gene family # Genes altered P-value Representative altered genes

Regulation of transcription 135 3.9 × 10–15 ALX4, DMRTA2, T, TWIST1, RUNX3, WWTR1
Homeobox 45 6.2 × 10–26 LHX5, NKX2-8, HOXB4, IRX1, MSX1, VAX2
Neuron differentiation/axon guidance 53 1.1 × 10–19 ROBO1, SLIT2, NRXN1, CTNNA2, NCAM2, BDNF
Cell adhesion 24 2.8 × 10–4 CDH15, CDH8, CADM1, ITGB2, LAMA5, CNTN4
Wnt signaling pathway 18 4.3 × 10–2 FZD10, FBXW11, NKD1, TCF7L1, EN2

a

b

c

Figure 3 Clustered gene-proximal mutations and pathways in PDA. (a) The most common mutational clusters across the patient cohort as determined  
by GECCO, with associated genes. “Yes” indicates that knockdown promoted cell death in shRNA cancer cell line screen (P denotes PDA-specific). 
“No” indicates that there was no evidence for effect on cell death in shRNA cancer cell line screen. (b) The most significant clusters when corrected  
for cluster size, as determined by GECCO. (c) DAVID pathway analysis was used to identify regulatory processes and pathways from genes associated 
with recurrent NCMs.
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of these 16 genes and patient outcome. Low mRNA expression of the 
phosphatase PTPRN2 and the ion transporter SLC12A8 were associated 
with decreased overall survival and decreased disease-free survival,  

respectively, in a univariate analysis (Fig. 4b,c). Furthermore, a mul-
tivariate analysis identified PTPRN2 as an independent prognostic 
variable for overall survival (Supplementary Table 3).

CRR (MUT No.) Nearest gene MUT allele WT allele Fold change P-value q-value

NCMs correlate with gene expression changes

MAX (5) PTPRN2
FOSL2 (7) KCNQ1
TAF7 (9) SNRPN
NFKB1 (7) GYPC
TAF1 (6) PDPN
BCLAF1 (5) PRSS12
MAFK (3) SOX5

WRNIP1 (3) IKZF1
GATA3 (3) PCLO

REST (3) MTERF4
GATA1 (3) FNIP2
CEBPB (3) PNPLA8
EGR1 (5) SLC12A8
SIN3A (3) FAM192A

0.82 10.92 0.075 0.00593 0.09689
0.85 6.39 0.133 0.02456 0.18212
0.46 3.4 0.135 0.00818 0.11818
1.08 7.29 0.148 0.01845 0.15157
2.09 13.08 0.160 0.03544 0.22016
1.07 6.46 0.166 0.01107 0.14144
0.29 1.63 0.178 0.02851 0.20379

POU2F2 (6) MIR4420 8.16 40.24 0.203 0.01773 0.15157
0.64 3.15 0.203 0.01811 0.15157
0.35 1.67 0.210 0.01113 0.14144

JUND (3) TUSC7 0.98 4.53 0.216 0.02909 0.20560
1.46 5.78 0.253 0.02209 0.16542
7.59 18.32 0.414 0.02588 0.18929
5.69 13.62 0.418 0.01726 0.15157
4.34 7.99 0.542 0.04185 0.23823
20.31 30.48 0.666 0.01788 0.15157
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Mechanisms of NCM-modulated expression
To uncover mechanisms by which expression-correlated SNPs may 
influence transcription, we annotated mutations with their predicted 
influence on local DNase I hypersensitivity using the software Basset44 

(see Online Methods). The predicted influences of these 55 SNPs were 
significantly greater in magnitude after Bonferroni correction than 
a null model of sampling from the full set in 160 of 164 examined 
cell types. For example, two different mutations in IRF1 and PRDM1 
motifs altered critical positions that are likely to affect binding within 
an intron of SLC12A8 (Fig. 4d). Additional mutations modulate an 
NRF1 motif in the promoter of SNRPN and a GATA motif adjacent to 
a PU.1 binding site in an intron of LSAMP (Supplementary Fig. 4).  
Therefore, GECCO enriches for NCMs with predicted effects on 
DNase hypersensitivity and transcription factor binding.

While the Basset analysis identified NCMs predicted to affect 
DNase hypersensitivity, we sought to uncover NCMs directly mod-
ulating gene expression. To determine the functional relevance of 
specific NCMs, we performed luciferase reporter assays in untrans-
formed HEK-293 cells and the MiaPaCa2 and Suit2 PDA cell lines, 
comparing gene expression driven by wild-type (WT) and mutated 
(MUT) sequences (Fig. 5). Among 11 regions tested, 7 (HEK-293) 
and 4 (MiaPaCa2, Suit2) mutations significantly altered luciferase 
expression. Notably, NCMs associated with PTPRN2, PDPN, TUSC7, 
SNRNP and MTERF4 significantly decreased luciferase expression 
in one or multiple cell lines, consistent with decreased expression  
of these genes associated with NCMs in patient samples (Fig. 4a).  
Our validation rate was greater than or comparable in terms of hit 
rate, and greater in terms of fold change, than that of other recent 
attempts to identify NCMs driving differential expression15,16, high-
lighting the power of GECCO to identify functionally significant 
NCMs from millions of candidate mutations.

Mutational and expression patterns of CRR classes
The second module of GECCO focuses on CRR classes, rather than 
individual genes, to identify mutational patterns and overall effects on 
gene expression of each CRR class (Fig. 6). We computed the mutation 
rate for each CRR class, correcting for element size and abundance 
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in the genome. We found no significant effect of GC content on CRR 
class mutation rate. Noncoding mutations were specifically enriched 
in certain classes of gene-proximal CRRs (Supplementary Note). Next 
we sought to understand the molecular characteristics of each CRR 
class in terms of effect on gene expression. We calculated an EMS for 
each CRR class, reflecting the impact of the presence of that CRR on 
the expression of the neighboring gene in relation to all other genes. 
This method compared, for each CRR class, mean expression of genes 
that are proximal to a CRR to those that are non-proximal. CRRs with 
strong predicted activating or repressing activity would be proximal 
to genes with expression levels substantially higher (for activators) or 
substantially lower (for repressors) than the basal genome expression 
level (Supplementary Table 4 and Online Methods). To determine 
whether the strongest activators and repressors were enriched for 
those CRRs with the highest mutational frequencies, we considered 
any activator or repressor that was greater than 1 s.d. from the mean 
EMS (12 activators, 9 repressors) (Fig. 6). The mutational frequencies 
for each group (activators, repressors, all others with balanced expres-
sion) were then calculated and activators and repressors compared 
to the balanced group (P = 0.02077 for activators versus balanced;  
P = 0.04982 for repressors versus balanced). The CRR classes with the 
highest percentage of mutations across all PDA patients were enriched 
on either end of the spectrum (most repressive or most active), sug-
gesting that recurrent NCMs are preferentially located in CRR classes 

with the strongest impact on gene expression. These highly active 
CRR classes have the largest effect on gene expression and may there-
fore confer a selective advantage on the cell. In addition, we noted that 
the six genes identified from the shRNA survival screen (Fig. 3a) were 
all associated with NCMs in highly repressive CRRs. In contrast, every 
gene that failed to score in the shRNA survival screen was associated 
with highly active CRRs (Fig. 3a).

Pathway dynamics between activating and repressing CRRs
Next we investigated the patterns of noncoding SUZ12 binding 
site mutations in our patient cohort, as SUZ12 had the highest 
repressive score and SUZ12 sites were frequently mutated (Fig. 6  
and Supplementary Table 4). We generated two distinct lists of 
SUZ12-associated genes. The first list contained those genes associ-
ated with recurrently mutated SUZ12 sites. The second list contained 
those genes associated with SUZ12 sites that never harbored recurrent 
NCMs. We then performed pathway analysis on each gene set to iden-
tify differences in biological functions (Fig. 7a). We found that genes 
without recurrent SUZ12 binding site mutations were enriched in 
glycoproteins, intracellular signaling and the axon guidance/neuron 
differentiation pathway. In contrast, genes with recurrent SUZ12 
binding site mutations were more significantly enriched in home-
obox genes, transcription factors, Wnt signaling, proto-oncogenes 
and the axon guidance/neuron differentiation pathway. Surprisingly, 
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several categories, including glycoproteins, intracellular signaling and 
extracellular matrix, were completely absent from the mutant SUZ12 
gene set. Therefore, there is specificity for the location of NCMs in 
PDA, not only for certain CRRs, but also for the corresponding can-
cer-associated genes and pathways.

To further characterize pathways downstream of commonly 
mutated repressive CRRs, we performed pathway analysis on genes 
with and without associated CTBP2 binding site mutations (Fig. 7a). 
Genes without CTBP2 binding site noncoding mutations showed a 
similar pattern of pathway regulation as SUZ12. These pathways were 
markedly enriched in the gene set associated with CTBP2 binding site 
mutations, while alternative splicing and glycoproteins were com-
pletely absent. We extended this analysis to another repressive CRR 
with a high mutational frequency, SETDB1 (Fig. 6a). Genes associ-
ated with recurrent NCMs in SETDB1 binding sites were enriched 
in axon guidance/neuron differentiation, cell adhesion and disease 
mutation pathways. Therefore, mutations in highly repressive CRRs 
are enriched in PDA and selectively associated with genes regulating 
a core set of biological processes.

We performed a similar analysis for the commonly mutated activa-
tor CRRs, including KAT2A, BCLAF1, TAF7 and WRNIP1 (Fig. 7b),  
and again found specificity for the genes and pathways that are com-
monly mutated. For all CRRs, there were significant differences 
in the pathways regulated by genes with or without mutations in a 
given CRR. KAT2A, BCLAF1 and TAF7 shared a very similar pat-
tern of pathway regulation, with significant increases in nucleosome 
assembly/organization, methylation and ubiquitin conjugation, all 
processes involved in chromatin dynamics. This suggests that genes 
associated with NCMs in transcriptional repressors regulate home-
obox genes and PDA-associated pathways, while genes associated 
with NCMs in transcriptional activators may regulate transcriptional 
dynamics through modulation of chromatin states.

DISCUSSION
We developed a new computational method, GECCO, to systemati-
cally analyze the noncoding genome of PDA to uncover recurrent 
regulatory somatic mutations. We find patterns of NCMs associated 
with genes regulating canonical PDA pathways, but not associated 
with commonly mutated PDA genes. Therefore, NCMs may serve 
as a new mechanism in cancer cells for regulating pathways critical 
for tumorigenesis. Furthermore, GECCO uncovers mutations cor-
related with changes in gene expression, including several known 
tumor suppressors and aberrantly methylated genes. GECCO pro-
duces a set of high-confidence calls that enrich for predicted effects 
on DNase hypersensitivity and transcription factor binding, as well 
as functional effects on gene expression, as experimentally demon-
strated by luciferase reporter assays. We find enrichment for NCMs in 
specific CRRs and distinct subsets of pathways associated with NCMs 
in highly repressive and transcriptionally active CRRs as identified by 
our EMS algorithm. To our knowledge, this is the first comprehensive 
analysis of noncoding alterations in PDA, providing insights into PDA 
pathogenesis and serving as a counterpart to the information gleaned 
from large-scale exome sequencing projects2,3.

Mutational analysis of patient tumors is increasingly informing 
treatment decisions, whereas complementary techniques, includ-
ing microarray, RNA sequencing, fluorescence in situ hybridization 
and immunohistochemistry, are required to analyze changes in gene 
or protein expression of cancer drivers that lack coding mutations. 
As somatic mutations in DNA regulatory elements can alter gene 
expression of cancer drivers, targeted or whole-genome sequencing 
may provide clinically useful information for these patients, both in 

terms of therapeutic decisions and clinical prognosis. Our analysis 
provides the first collection of NCMs that correlate with changes in 
gene expression in PDA. Furthermore, we uncover clinical outcome 
relationships for PTPRN2 and SLC12A8, neither of which has previ-
ously been implicated in PDA.

Functional validation of NCM–gene expression associations is a 
critical step in evaluating the robustness of an analysis pipeline. Our 
luciferase reporter assay experiments demonstrated that GECCO had 
a higher validation rate in cancer cell lines than any recent study 
of NCMs15,16. Furthermore, the validation rate in HEK-293 cells, a 
standard cell line for luciferase assays, was 64%, concordant with the 
expected false discovery rate. Finally, GECCO accurately predicted 
the directionality of gene expression changes associated with NCMs. 
NCMs associated with PTPRN2, PDPN, TUSC7, SNRNP and MTERF4 
significantly decreased luciferase expression in one or multiple cells 
lines, consistent with decreased gene expression of these genes asso-
ciated with NCMs in patient samples. This is in contrast to a recent 
report wherein the directionality of gene expression changes in the 
luciferase assay was not consistent with the predicted response16. 
Therefore, GECCO represents a noteworthy improvement in the 
ability to identify functionally relevant NCMs.

Pathway analysis of the gene lists generated by GECCO led to sev-
eral unexpected findings. Strikingly, we found that the most highly 
recurrent somatic NCMs were located near genes in known PDA-
associated pathways, including axon guidance, cell adhesion and Wnt 
signaling, but not the most commonly mutated PDA genes. This sug-
gests that NCMs may drive tumor progression through modulation 
of PDA-specific pathways, providing an alternative route for pathway 
activation and a new mechanism of tumorigenesis. Furthermore, we 
provide evidence that NCMs in specific regulatory element classes are 
selected for during tumor evolution. These highly mutated regulatory 
element classes are predominantly those with the greatest impact on 
gene expression. Therefore, clusters of NCMs are enriched in gene-
proximal regions with the greatest regulatory impact, again providing 
evidence for selection during tumorigenesis.

Pathway analysis of genes near NCMs within these highly mutated 
regulatory regions shows selectivity for PDA pathways. These path-
ways are not enriched when analyzing genes without associated 
clusters of NCMs, again arguing in favor of selection. Notably, many 
transcriptional regulators bind selectively to different regions of the 
genome in malignant versus non-neoplastic cells45. We propose that 
NCMs found within promoters of PDA pathway genes modify regula-
tory factor binding to alter gene transcription, thereby providing an 
additional mechanism promoting cancer.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data acquisition. All data used in this analysis were downloaded from the 
International Cancer Genome Consortium (IGCG) data portal (https://dcc.
icgc.org/projects/). At our last date of access (Feb 11, 2015), simple somatic 
mutations (SSMs) for 405 pancreatic ductal adenocarcinoma samples were 
available from the Australian (PACA-AU) and Canadian (PACA-CA) groups. 
We downloaded the clinical data, SSMs and, when available, sequence-based 
gene expression (EXP-S) data for all 405 patients.

Preprocessing. The whole-genome sequencing (WGS) required to call SNVs 
across all 405 patients and the whole genome RNA-sequencing required to 
calculate gene expression were carried out by two distinct consortia, one 
Canadian and one Australian. All SNV calls (SSMs) and gene expression  
calculations (EXP-S) by these two groups were consolidated by ICGC.

SNV calls from whole-genome sequencing. For each of the 405 patients, we 
extracted the chromosome, start location, end location, somatic allele and 
mutated allele from the list of SSMs (file: ssm_open.tsv) and converted to bed 
format. Many of the SNVs were redundant within patients. For each patient, 
the list of SNVs was sorted by genomic coordinates and consolidated to contain 
only a single entry for each unique SNV. A subset of patients had extremely 
low numbers of SNVs (likely due to poor sequencing results) or high numbers 
of SNVs (likely due to hypermutated regions, unlocalized replication defects 
or microsatellite instability). Across all 405 patients, the number of unique 
SNVs ranged from 1 to 440,471, with a mean of 7,937 and a s.d. of 26,224. To 
remove outliers, we eliminated all patients with less than 100 SNVs (92 patients 
in total) or an SNV count more than 3 s.d. away from the mean (5 patients  
in total). This left 308 patients with a mean SNV count of 7,300 and a range 
from 1,040 to 68,885.

Gene expression (FPKM) from whole genome RNA-sequencing. Of the 308 
patients that passed the previous filtering step, 96 had expression data avail-
able from ICGC. For each of the 96 patients, we extracted the normalized 
read count (FPKM) and Ensembl gene ID (file: exp_seq.tsv). While the vast 
majority of genes had expression data across all 96 patients, there were several 
thousand Ensembl genes that only contained expression data for a subset of 
patients. To streamline and simplify downstream analysis, we kept only the 
50,861 Ensembl genes that were shared by all 96 patients. In addition, there 
were three patients (DO33168, DO35098, DO35100) that had gene expression 
from either two or three independently sequenced samples. For these three 
patients, the gene expression for each gene was calculated by taking the mean 
across all samples.

Analyzing noncoding variants with GECCO. To identify potential noncoding 
cancer drivers, we first used FunSeq2 (v2.1.0) as a high-level filter to priori-
tize our SNVs. The unique SNVs for each of the 308 patients were converted 
to bed format and analyzed by FunSeq2 using the command “./run.sh -inf  
bed -n” to identify only noncoding variants. This analysis pipeline requires 
a suite of annotation data that is used to make calls and score noncoding 
variants. These were downloaded from http://funseq2.gersteinlab.org/.  
One of these files, “ENCODE.annotation.gz”, contains the full list of transcrip-
tion factor binding sites/CRRs used in our analysis along with their exact 
genomic coordinates.

Processing recurrently mutated cis-regulatory regions (CRRs). FunSeq2 gen-
erates a number of output files, including Recur.Summary, which contains a 
list of all noncoding elements, the genomic coordinates of these elements, the 
fraction of patients with a mutation in this element and the full list of patient 
identifiers along with the genomic locations of each mutation. While the 
ENCODE annotation data provides a number of different noncoding elements 
(enhancers, transcription factor binding sites, DNase hypersensitivity, etc.), 
we chose to focus our analysis on transcription factor binding sites—referred 
to in this manuscript as CRRs—as they were the most highly represented class 
of elements identified. CRR proximal genes were found by intersecting CRRs 
with genes that had been expanded by 2 kb at their 5′ and 3′ ends.

Calculating CRR mutation rates. As described above, the full list of CRRs 
(121 distinct CRR classes in total), including their counts and genomic posi-
tions, can be found in “ENCODE.annotation.gz.” GECCO makes two separate 
calculations across all 121 CRR classes using the CRR genomic information: 
for a given CRR class, it calculates (i) the fraction of distinct CRR sites that 

are mutated within the class and (ii) the base level mutation rate for each CRR 
class (the number of mutations in all CRRs of a given class divided by the total 
number of base pairs of all CRRs in a given class). For an individual CRR, there 
are three ways in which GECCO calculates the mutational frequency: (i) by 
summing the number of mutations in a given CRR, (ii) by calculating the frac-
tion of bases in the CRR that are mutated (that is, mutation counts normalized 
by read length), or (iii) by calculating the fraction of bases in a CRR mutation 
cluster. Option (iii) is computed by first determining the cluster size within 
a CRR, the number of bases required to span all mutations in a given CRR. 
For example, consider a 2-kb CRR with 9 mutations. If the two most distantly 
separated of the 9 mutations are 100 bp apart, then the length of the mutation 
cluster is 100 bp. The mutational frequency of the cluster is then computed 
by dividing the number of mutations in that cluster by the size of the cluster 
(9/100 = 9.0%). This approach weights exactly recurrent or proximal mutations 
more strongly than distant mutations.

Pathway analysis. The Database for Annotation, Visualization and Integrated 
Discovery (DAVID), a functional annotation enrichment algorithm for large-
scale biological data sets, was used for pathway analysis, with the following 
annotation categories: SP_PIR_KEYWORDS, GOTERM_BP_FAT, KEGG_
PATHWAY, PANTHER_PATHWAY, SMART. A Bonferroni-corrected P-value 
of 0.05 was used as a cutoff for enrichment significance.

Survival analysis. Median survival was estimated using the Kaplan-Meier 
method, and the difference was tested using the log-rank test. P values of less 
than 0.05 were considered statistically significant. Clinico-pathologic vari-
ables analyzed with a P value of less than 0.25 on log-rank test were entered 
into Cox proportional-hazard multivariate analysis, and redundant variables 
were eliminated using a backward elimination method. Statistical analysis 
was performed using StatView 5.0 Software (Abacus Systems). Overall sur-
vival (OS) or disease-free survival (DFS) was used as the primary endpoint 
(PTPRN2 expression > 4.98 defined as high, and SLC12A8 expression > 7.03 
defined as high).

Computing differential expression. Differential expression was computed 
for each recurrently mutated CRR that was within 2 kb of an Ensemble gene 
using permutation testing. For each CRR/gene pair, the 96 patients with 
mutation data were split into two groups: patients with mutations in the CRR  
and patients without mutations in the CRR. Using the expression data down-
loaded from ICGC for the gene of interest, a t-test is performed to generate a 
single t-value (the observed t-value). The expression values for patients with 
mutations in CRRs and the expression values for patients without mutations 
are then permuted 100,000 times to generate 100,000 additional t-values (the 
permuted t-values). These t-values generally fit a Gaussian distribution, to 
which the observed t-value is then compared to using a two-tailed test. The 
empirical P-value is computed as the fraction of times (x/100,000) that a per-
muted t-value falls further outside the Gaussian distribution than the observed 
t-value. Once P-values have been calculated for all recurrently mutated genes 
proximal to CRRs, GECCO estimates q-values (the false discovery rate) for 
each call. This is done using the “qvalue” package in R and measures the pro-
portion of false positives incurred given the P-value distribution.

Luciferase reporter assay and statistics. Sequences of the 150 bp surrounding 
specific NCMs (wild type, WT; or mutant, MUT) were synthesized (Integrated 
DNA Technologies) and cloned into pGL4.23 (Promega), containing a mini-
mal promoter driving firefly luciferase. Five thousand cells per well (HEK-293, 
MiaPaCa2 or Suit2) were cotransfected in 96-well format with the specific 
WT or MUT vector and pRL-SV40P (Renilla luciferase, Addgene #27163) as 
a normalization control. Luciferase activity was measured 48 h after trans-
fection with the Dual-Luciferase Reporter Assay System (Promega). Values 
reported are firefly luciferase divided by Renilla luciferase. Analytical statistics  
were generated in Prism 7.0 (GraphPad), and P values are from two-tailed 
unpaired t tests. All cell lines were obtained from ATCC and tested for myco-
plasma contamination.

Computing expression modulation scores (EMS). Some CRRs bind transcrip-
tion factors or transcription factor components with well-known expression 
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modulation, including SUZ12 and CTBP2, which act as transcriptional repres-
sors, or BDP1 and BRF1, which act as transcriptional activators. However, 
many of the 121 CRRs used in this study have unexplored or unvalidated 
directions of expression modulation. We developed a method to infer the 
direction and effect of expression modulation for each CRR class by comparing 
the expression of genes proximal to CRRs in a given CRR class to the mean 
expression of all other active genes in the genome.

Many genes are inactive in any given tissue, and in a given RNA-seq exper-
iment, ~50% of genes show low to no expression. For all 96 patients with 
expression data, we found this also to be true, with ~50% of genes showing no 
expression. When computing the expression modulation for each CRR class, 
we ignored all genes that showed no expression in at least 90% of patients  
(86 patients or more). For a given CRR class and for each of the 96 patients,  
we compute (i) the mean expression of all genes proximal to CRRs in that class 
and (ii) the mean expression of all genes nonproximal to a CRR in that class. 
For a given CRR class, we then compute the log of the ratio between (i) and 
(ii) for each of the 96 patients and then take the mean of the log ratio for all 
96 patients to get a single “expression modulation score” for each CRR class. 
The log of the ratio will be negative if the mean expression of genes proximal 
to a CRR class is lower than the genome average (repression) and will be posi-
tive if the mean expression of genes proximal to a CRR class is higher than 
the genome average (activation). Note that this calculation is not meant to 
generate absolute numerical score for the repressive or activating activity of 
a CRR but is instead used to generate a rank-sorted list of CRR classes based 
on their expression modulation.

Basset analysis. Basset is a recently introduced method based on convolu-
tional neural networks to accurately predict DNase I hypersensitive sites from 

DNA sequence, thus enabling annotation of the influence of mutations on 
accessibility44. We trained the Basset deep convolutional neural network on 
DNase I hypersensitive sites from 164 cell types mapped by ENCODE and the 
Roadmap Epigenomics projects. From this, we predicted the influence of vari-
ants on the presence of DNase hypersensitivity in each cell type by computing 
the difference between predictions on sequences with each allele. Candidate 
high impact variants were further analyzed for the ability to interrupt known 
binding sites by converted Basset-learned first convolution layer filters to 
probabilistic position weight matrixes by counting nucleotide occurrences in 
the set of sequences that activate the filter to a value that is more than half of 
its maximum value. We identified the likely binding protein for the motifs by 
querying the CIS-BP database46 (accessed on 12 June 2015) using the TomTom 
v4.10.1 search tool47 and requiring an FDR q < 0.1.

Code availability. All code can be requested by contacting M.C.S.

Data availability. All data used in this analysis were downloaded from the 
International Cancer Genome Consortium (IGCG) data portal (https://dcc.
icgc.org/projects/). At our last date of access (11 February 2015), simple 
somatic mutations (SSM) for 405 pancreatic ductal adenocarcinoma samples 
were available from the Australian (PACA-AU) and Canadian (PACA-CA) 
groups. We downloaded the clinical data, SSMs and, when available, sequence-
based gene expression (EXP-S) data for all 405 patients.

46. Weirauch, M.T. et al. Determination and inference of eukaryotic transcription factor 
sequence specificity. Cell 158, 1431–1443 (2014).

47. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L. & Noble, W.S. Quantifying 
similarity between motifs. Genome Biol. 8, R24 (2007).
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