
 

 

1 

 

Alternative polyadenylation characterizes epithelial and fibroblast 1 
phenotypic heterogeneity in pancreatic ductal adenocarcinoma 2 

 3 

Swati Venkat and Michael E. Feigin* 4 

 5 

Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 6 
Buffalo, NY 7 

 8 

* Corresponding author: MEF  9 

Email:  michael.feigin@roswellpark.org 10 

Twitter: @TheFeiginLab 11 

 12 

ORCID: 13 

SV: 0000-0001-7551-3888 14 

MEF: 0000-0002-8189-5568 15 

 16 

 17 

Author Contributions: 18 

Performed data analysis: SV 19 

Wrote the manuscript: SV, MEF 20 

Supervised the study: MEF 21 

 22 

Competing Interest Statement: None   23 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.09.18.460907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460907
http://creativecommons.org/licenses/by-nd/4.0/


 

 

2 

 

Abstract 24 

Human tumors are characterized by extensive intratumoral transcriptional variability within the 25 

cancer cell and stromal compartments. This variation drives phenotypic heterogeneity, 26 

producing cell states with differential pro- and anti-tumorigenic properties. While bulk RNA 27 

sequencing cannot achieve cell type specific transcriptional granularity, single cell sequencing 28 

has permitted an unprecedented view of these cell states. Despite this knowledge, we lack an 29 

understanding of the mechanistic drivers of this transcriptional and phenotypic heterogeneity. 3’ 30 

untranslated region alternative polyadenylation (3’ UTR-APA) drives gene expression alterations 31 

through regulation of 3’ UTR length. These 3’ UTR alterations modulate mRNA stability, protein 32 

expression and protein localization, resulting in cellular phenotypes including differentiation, cell 33 

proliferation, and migration. Therefore, we sought to determine whether 3’ UTR-APA events 34 

could characterize phenotypic heterogeneity of tumor cell states. Here we analyze the largest 35 

single cell human pancreatic ductal adenocarcinoma (PDAC) dataset and resolve 3’ UTR-APA 36 

patterns across PDAC cell states. We find that increased proximal 3’ UTR-APA is associated 37 

with PDAC progression and characterizes a metastatic ductal epithelial subpopulation and an 38 

inflammatory fibroblast population. Furthermore, we find significant 3’ UTR shortening events in 39 

cell state-specific marker genes associated with increased expression. Therefore, we propose 40 

that 3’ UTR-APA drives phenotypic heterogeneity in cancer. 41 

  42 
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Background 43 

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of 10% 44 

[1]. PDAC tumors are characterized by a dense stroma and a high degree of cell type specific 45 

phenotypic variation that is integral to disease progression and drug resistance [2–4]. Over the 46 

past decade, bulk and single cell RNA sequencing (scRNA-seq) analyses uncovered substantial 47 

inter- and intratumoral transcriptional heterogeneity [5–7]. These studies have formed the basis 48 

for patient stratification and delineation of phenotypically distinct epithelial and stromal 49 

subpopulations. For example, tumor epithelial cells have been found to exist in subpopulations 50 

that exhibit differing proliferative and metastatic potential [6,8,9]. Similarly, phenotypically 51 

distinct subsets of cancer associated fibroblasts (CAFs) characterized by unique transcriptional 52 

profiles have been identified within the tumor microenvironment [10,11]. Two major CAF 53 

subclasses, inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), have distinct but 54 

crucial roles in tumor progression and therapeutic resistance [12,13]. However, mechanistic 55 

drivers of such transcriptional and phenotypic heterogeneity in PDAC remain unclear. Recently, 56 

we performed an in-depth analysis of sequencing data on PDAC tumors that established 3’ UTR 57 

alternative polyadenylation (APA) as a mechanistic driver of oncogene expression [14–16]. 58 

Specific PDAC oncogenes were found to undergo proximal 3’ UTR-APA (usage of proximal 3’ 59 

UTR polyadenylation site) resulting in shorter 3’ UTRs, driving increased expression. However, 60 

as this analysis made use of bulk RNA-seq data, it was impossible to determine the contribution 61 

of APA to cell type specific transcriptional heterogeneity. To determine if APA could be a 62 

mechanistic driver of phenotypic variation in cancer we now leverage the largest scRNA-seq 63 

human PDAC dataset recently published by Peng et al. [17]. Unlike bulk sequencing data, the 64 

majority of single cell sequencing protocols are 3’ biased, allowing robust detection of 3’-UTR-65 

APA changes and the associated transcriptional heterogeneity in a high-resolution dataset 66 
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[7,18–20]. To our knowledge, this is the first investigation of APA events associated with 67 

intratumoral heterogeneity.    68 

 69 

Results and Discussion 70 

To understand whether APA is associated with cell type specific phenotypic variation, we sought 71 

to identify cell types that exhibit substantial 3’ UTR-APA events. To achieve this, we reanalyzed 72 

the scRNA-seq PDAC dataset (Additional file Fig. S1a) comprised of 11 normal pancreata and 73 

24 tumor samples. We focused on cell types that form a significant proportion of the tumor, 74 

including acinar and ductal epithelial cells, and stromal fibroblasts and stellate cells. After quality 75 

control (see Methods), we processed a total of 22053 tumor cells across 21 tumor samples and 76 

10345 normal cells across 11 pancreata for downstream analyses. We adapted a recently 77 

published algorithm to detect 3’ UTR-APA events from scRNA-seq data [18] (Additional file Fig. 78 

S1b). In concordance with previous findings, tumor tissues exhibited significantly higher 79 

proximal 3’ UTR-APA gene events (3’ UTR shortening) as compared to normal tissues [14,16]. 80 

In particular, tumor ductal cells showed significantly higher numbers of proximal 3’ UTR-APA 81 

events (1177 genes expressed shorter 3’ UTRs and 250 genes expressed longer 3’ UTRs) 82 

compared to normal ductal cells (Fig. 1a). While fibroblasts, acinar cells and stellate cells in 83 

PDAC tumors exhibited a higher number of proximal 3’ UTR-APA events compared to their 84 

normal counterparts, PDAC ductal cells exhibited the highest ratio of proximal to distal 3’ UTR-85 

APA events (~5:1) compared to other cell types. While a bulk PDAC RNA-seq study would 86 

reveal significant 3’ UTR-APA events occurring across a mixture of these cell types, it would fail 87 

to resolve cell type specific 3’ UTR-APA events. The extent of proximal 3’ UTR-APA in PDAC 88 

ductal cells motivated us to probe APA events within this transcriptionally diverse cell 89 

population. Peng and colleagues identified two subsets of PDAC ductal cells, namely ductal cell 90 
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type 1 and ductal cell type 2. Ductal cell type 2 constituted the majority of the PDAC ductal cells 91 

and exhibited a malignant gene expression profile. Ductal cell type 1 expressed an abnormal 92 

gene expression profile that was distinct from the normal cells, representing a transcriptional 93 

state between normal and tumor ductal cells [17]. We performed dimensionality reduction and 94 

clustering to delineate these transcriptionally distinct subsets of normal and tumor ductal cells 95 

(Fig. 1b). Clustering revealed 6 transcriptionally distinct subclusters: normal ductal cells (dA), 96 

tumor ductal cell type 1 (dB) and tumor ductal cell type 2 (composed of subclusters dC, dD, dE, 97 

dF). Interpatient as well as intrapatient heterogeneity was detected in ductal cell type 2 with the 98 

majority of the patients represented in subcluster dC and a minority in subclusters dD, dE and 99 

dF (Additional file, Fig. S2a). Subcluster dE specific genes were enriched for metastatic markers 100 

(HMGA1, ENO1, GABRP, IGFBP2, SDC1, LGALS1) (Additional file, Fig. S2b) and pathway 101 

enrichment analysis of dE overexpressed genes showed epithelial to mesenchymal transition 102 

(EMT) as a top hit supporting its metastatic phenotype (Additional file, Fig. S2c) [21–26]. In 103 

contrast, gene expression and pathway analysis of subcluster dD specific genes showed 104 

enrichment for well-differentiated PDAC markers (REG4, TFF1, TFF2, TFF3, VSIG2, LGALS4), 105 

highlighting the extensive phenotypic heterogeneity exhibited by PDAC ductal cells (Additional 106 

file, Fig. S2d) [6].  107 

 108 

We first sought to characterize APA patterns across the broad ductal cell states (normal ductal 109 

cells, tumor ductal cell type 1, tumor ductal cell type 2) to determine the relationship between 110 

APA and tumor progression. We determined the mean proximal polyA site usage index (mean 111 

proximal PUI), the extent of 3’ UTR proximal site usage for each cell, averaged over all genes 112 

(see Methods, [18]). A higher mean proximal PUI indicates enhanced cleavage at proximal 113 

polyadenylation sites in the cell (resulting in shorter 3’ UTRs). We plotted the mean proximal 114 

PUI for every ductal cell associated with each cell state (Fig. 1c). Pseudotime analysis 115 
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confirmed progression from a normal state (normal ductal cells) to an abnormal intermediate 116 

state (tumor ductal type 1) to a malignant ductal state (tumor ductal type 2) (Additional file, Fig. 117 

S2e). This malignant progression was associated with a progressive and significant increase in 118 

mean proximal PUI (Fig 1d). Therefore increased proximal 3’-UTR-APA is associated with 119 

malignant progression in PDAC.  120 

 121 

We noted substantial APA heterogeneity within the subclusters comprising tumor ductal cell 122 

type 2 (dC, dD, dE) and therefore quantified proximal 3’ UTR-APA patterns across these cells. 123 

The cells in the metastatic subcluster dE showed a significant increase in mean proximal PUI 124 

compared to dC, indicating increased 3’ UTR shortening events in dE (Fig. 1e). In contrast, the 125 

cells in the well-differentiated PDAC subcluster dD showed a significant decrease in mean 126 

proximal PUI compared to dC, indicating decreased 3’ UTR shortening events (Additional file, 127 

Fig. S2f). To determine if these APA events are associated with known metastatic driver genes, 128 

we performed pathway enrichment analysis of the 3’ UTR altered genes in dE, which revealed 129 

EMT as a top hit (Fig. 1f). Furthermore, we found significantly increased proximal APA of 130 

metastasis-promoting genes preferentially expressed in dE, including GABRP and SDC1 (Fig. 131 

1g, 1h, Additional file, Fig. S2b). This suggests a novel role of proximal 3’ UTR-APA in 132 

orchestrating the metastatic PDAC phenotype.  133 

 134 

CAFs are a transcriptionally and phenotypically heterogeneous population in the tumor 135 

microenvironment that make fundamental contributions to both progression and therapy 136 

response [11,12,27–29]. How this transcriptional heterogeneity is developed and maintained 137 

during tumorigenesis is integral to the advancement of more effective therapeutic strategies. In 138 

PDAC, two major CAF subtypes have been discovered and functionally characterized – 139 

myCAFs, responsible for secreting the extracellular matrix components that promote a dense 140 
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desmoplastic stroma, and iCAFs, responsible for secreting IL-6 and other inflammatory 141 

mediators. To investigate the role of APA in CAF biology, we clustered normal fibroblasts and 142 

CAFs and identified transcriptionally differing subclusters within the CAF population (Fig. 2a). 143 

Clustering revealed transcriptionally distinct subclusters including normal fibroblast cells (fA) 144 

and tumor fibroblast cells (composed of subclusters fB-fE). Pathway analysis and cluster 145 

specific gene markers revealed fC as a myCAF population (ACTA2, POSTN, MMP11, IGFBP3, 146 

COL12A1, THBS2), (Additional file, Fig. S3a, S3c) and fD as an iCAF population (HAS1, HAS2, 147 

CCL2, UGDH, SOD2, LMNA), (Additional file, Fig. S3b, S3d) [12,13]. To characterize 3’ UTR-148 

APA patterns, we determined the mean proximal PUI for every normal and tumor fibroblast cell 149 

(Fig. 2b). In contrast to normal fibroblasts, the tumor fibroblast population showed a small but 150 

significant increase in proximal 3’ UTR-APA (Additional file, Fig. S3e), indicative of more 3’ UTR 151 

shortening events in CAFs. We next examined 3’ UTR-APA underlying CAF heterogeneity and 152 

found no significant difference between normal fibroblasts and the myCAF population (Fig. 2c). 153 

In contrast, there was a significant increase in 3’ UTR shortening in the iCAF population (Fig. 154 

2d, Additional file, Fig. S3f), revealing that increased proximal APA characterizes the 155 

inflammatory CAF phenotype.  Importantly, we found significant increased proximal APA of 156 

critical iCAF markers such as SOD2 and UGDH associated with their increased expression in 157 

iCAFs (Fig. 2e, 2f, Additional file, Fig. S3b). This suggests a novel role of 3’ UTR-APA in 158 

orchestrating the inflammatory CAF phenotype.  159 

 160 

Conclusions 161 

3’ UTR-APA is an underappreciated driver of gene dysregulation in cancer. Single cell 162 

sequencing has revealed that tumors have high degrees of transcriptional and phenotypic 163 

heterogeneity, both within the cancer cell and stromal compartments. However, drivers of such 164 

complex phenotypic heterogeneity remain unclear. In this study, we investigated 3’UTR-APA 165 
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associated phenotypic heterogeneity using single cell data. To our knowledge, this is the first 166 

investigation of APA events associated with intratumoral heterogeneity. We demonstrate that 3’ 167 

UTR shortening increases progressively during PDAC progression. Furthermore, 3’ UTR 168 

shortening of critical metastatic and iCAF marker genes is associated with increased 169 

expression, thereby defining cell identity. Increased proximal 3’ UTR-APA characterizes a 170 

metastatic ductal subpopulation in tumor epithelial cells as well as an inflammatory CAF 171 

population in the PDAC stroma. We propose that 3’ UTR-APA drives phenotypic heterogeneity 172 

both in the tumor epithelium and within the tumor microenvironment.  173 
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Methods 174 

Bioinformatic processing of human scRNA-seq data. scRNA-seq FASTQ files of 24 PDAC 175 

patients and 11 normal pancreata were downloaded from Genome Sequence Archive (GSA) 176 

(Accession: CRA001160, Bioproject: PRJCA001063). Cell Ranger 3.1.0 using standard 177 

parameters was used to align each file to the hg19 genome [30]. Appropriate chemistry and 178 

alignment by Cell Ranger was detected for 21 patients and 11 normal tissues and these data 179 

were used for downstream analyses. We focused on annotated cells (Peng et al. [17]) with at 180 

most 6000 genes/cell (to eliminate doublets) and with at least 200 genes/cells. Cells with >10% 181 

mitochondrial counts and genes occurring in <3 cells were excluded from the analysis. This 182 

yielded 10345 normal cells and 22053 tumor cells for the analysis of 3’ UTR-APA events.    183 

 184 

Analysis of 3’UTR-APA events. Analysis of 3’ UTR-APA events was performed by manual 185 

implementation of the scRNA-seq algorithm proposed in [18] (Fig. S1b). Briefly, PCR duplicates 186 

were discarded from aligned BAM files using UMI tools [31]. These files were used to detect 187 

peaks in 3’ UTR read density using Homer findPeaks function [32,33]. Additionally, cell type 188 

identity was obtained from Peng et al. [17] and we used this information to annotate major cell 189 

types and generate cell type specific BAM files. Reads in cell type specific BAMs that mapped 190 

to Homer-determined peak positions were measured using Feature counts (Rsubread package) 191 

[34]. Low count peaks (<10 CPMs over all cell clusters) and peaks with A-rich sequences [18] 192 

were filtered out, allowing identification of statistically significant 3’UTR-APA events and mean 193 

proximal PUI at a single cell level exactly as described in [18]. IGV plots were used to visualize 194 

the read density changes for the 3’ UTR altered genes. Frequency density plots were used to 195 

visualize distribution of mean proximal PUI across single cells in a subcluster and significant 196 

differences between subclusters were assessed using the Wilcoxon ranked sum test with 197 

continuity correction.   198 
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Bioinformatics analyses and statistical methods. Subsequent analyses were carried out in R 199 

4.0.4. Monocle3 was used to analyze single cell trajectories to determine cell state transitions 200 

[35]. Top 200 differentially expressed genes between normal and tumor type 2 ductal cells were 201 

used for dimensionality reduction via UMAP and clustering and the mean proximal PUI for each 202 

cell was overlayed. The top 25 cluster-specific marker genes were identified using the 203 

top_markers function in Monocle3. Differentially expressed genes between the subclusters were 204 

identified using the FindMarkers function in Seurat4 [36]. Gene Set Enrichment Analysis 205 

(GSEA) and Enrichr were used to perform pathway analysis using the MSigDB hallmark, KEGG 206 

and Reactome gene sets [37,38]. Enrichment of the input genes (3’-UTR-APA altered 207 

genes/differentially expressed genes) in Enrichr was computed using the Fisher’s exact test and 208 

p-values were adjusted using the Benjamini-Hochberg correction (FDR < 0.01). A similar 209 

approach was implemented for analysis of fibroblasts. 210 

 211 

Availability of data and materials. The R code written for this analysis is available on GitHub 212 

(https://github.com/feiginlab/APA_PDA).  213 
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Figure legends 304 

Figure 1. Proximal APA in tumor epithelium is associated with PDAC progression and 305 

malignant phenotypes. 306 

1a. A plot of number of shortened (red) and lengthened (blue) 3’ UTR-APA events across four 307 

PDAC cell types compared to their counterparts in normal pancreas. 308 

1b. UMAP embedding of ductal cells (dots) from normal pancreata and tumor patients. Color 309 

indicates the ductal cell type membership. Notations dA-dF denote the subclusters.  310 

1c. UMAP embedding of ductal cells from normal pancreata and tumor patients. Color indicates 311 

degree of mean proximal PUI in each cell (blue, low; green, high).  312 

1d. Distribution of mean proximal PUI of single cells in normal ductal cells (orange), tumor 313 

ductal cell type 1 (green) and ductal cell type 2 (blue) (every pairwise comparison yielded p<10-314 

7).  315 

1e. Distribution of mean proximal PUI of single cells  in subcluster dE (green) compared to 316 

subcluster dC (brown) (p<10-16). 317 

1f. Significantly enriched pathways (FDR < 0.01) associated with 3’ UTR altered genes between 318 

subclusters dE and dC. 319 

1g. IGV plot highlighting the 3’ UTR density profile differences of the metastatic gene GABRP 320 

between subclusters dC (brown) and dE (green).  321 

1h. IGV plot highlighting the 3’ UTR density profile differences of the metastatic gene SDC1 322 

between subclusters dC (brown) and dE (green).  323 

 324 
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Figure 2. Increased proximal APA characterizes the inflammatory CAF phenotype. 325 

1a. UMAP embedding of fibroblast cells (dots) from normal pancreata and tumor patients. Color 326 

indicates the fibroblast cell type membership. Notations fA-fE denote the subclusters.  327 

1b. UMAP embedding of fibroblast cells from normal pancreata and tumor patients. Color 328 

indicates degree of mean proximal PUI in each cell (blue, low; green, high).  329 

1c. Distribution of mean proximal PUI of single cells (p=0.6) in normal fibroblast cells (orange) 330 

and myCAFs (purple).  331 

1d. Distribution of mean proximal PUI of single cells  (p<10-16)  in iCAFs (green) compared to 332 

normal fibroblast cells (orange).  333 

1e. IGV plot highlighting the 3’-UTR density profile differences of the iCAF activated 334 

transcription factor SOD2 between iCAFs (green) and myCAFs (purple).  335 

1f. IGV plot highlighting the 3’-UTR density profile differences of the iCAF marker UGDH 336 

between iCAFs (green) and myCAFs (purple).  337 

 338 

Figure S1. Description of the scRNA-seq dataset and the workflow used to quantify 3’ 339 

UTR-APA in PDAC. 340 

S1a. A pie graph representing the single cell dataset that was used for downstream analyses of 341 

3’ UTR-APA patterns. Proportion of ductal and acinar cells in the epithelium, and fibroblast and 342 

stellate cells in the stroma are highlighted. 343 

S1b. The workflow implemented to detect and quantify 3’ UTR-APA events from single cell 344 

sequencing data (adapted from [18]).  345 
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Figure S2. Proximal APA in tumor epithelium is associated with PDAC progression and 346 

malignant phenotypes. 347 

S2a. Barplot showing contribution of different ductal subclusters to each PDAC patient. 348 

S2b. Violin plots of select metastatic markers across ductal cell type 2 subclusters (p<0.001). 349 

S2c. Significant enriched pathways (FDR < 0.01) associated with genes overexpressed in dE 350 

compared to dC.  351 

S2d. Violin plots of select well-differentiated PDAC markers across ductal cell type 2 subclusters 352 

(p<0.001). 353 

S2e. Pseudo-time analysis depicting progression of ductal cell states (purple, early; yellow, late) 354 

based on their gene expression profiles. 355 

S2f. Distribution of mean proximal PUI of single cells in subcluster dD (purple) compared to 356 

subcluster dC (brown) (p<10-16).  357 

 358 

Figure S3. Increased proximal APA characterizes the inflammatory CAF phenotype. 359 

S3a. Violin plots of myCAF markers across normal fibroblasts (fA, orange) and specific tumor 360 

fibroblast subclusters (fC, purple; fD, green). 361 

S3b. Violin plots of iCAF markers across normal fibroblast (fA) and specific tumor fibroblast 362 

subclusters (fC, fD). 363 

S3c. GSEA of significantly downregulated pathways in iCAFs compared to my CAFs. 364 

S3d. GSEA of significantly upregulated pathways in iCAFs compared to my CAFs. 365 
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S3e. Distribution of mean proximal PUI of single cells of normal fibroblasts (orange) compared 366 

to tumor fibroblasts (blue) (p<0.005).   367 

S3f. Distribution of mean proximal PUI of single cells of iCAFs (green) compared to myCAFs 368 

(purple) (p<10-16).  369 
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