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Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3′-UTR length, resulting in changes in

mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expres-

sion of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor land-

scape; however, little is known about tumor type–specific alterations that may uncover novel events and vulnerabilities.

Here, we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome

Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDACs). We report wide-

spread, recurrent, and functionally relevant 3′-UTR alterations associated with gene expression changes of known and newly

identified PDAC growth-promoting genes and experimentally validate the effects of these APA events on protein expression.

We find enrichment for APA events in genes associated with known PDAC pathways, loss of tumor-suppressive miRNA bind-

ing sites, and increased heterogeneity in 3′-UTR forms of metabolic genes. Survival analyses reveal a subset of 3′-UTR alter-

ations that independently characterize a poor prognostic cohort among PDAC patients. Finally, we identify and validate the

casein kinase CSNK1A1 (also known as CK1alpha or CK1a) as an APA-regulated therapeutic target in PDAC. Knockdown or

pharmacological inhibition of CSNK1A1 attenuates PDAC cell proliferation and clonogenic growth. Our single-cancer analysis

reveals APA as an underappreciated driver of protumorigenic gene expression in PDAC via the loss of miRNA regulation.

[Supplemental material is available for this article.]

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a
5-yr survival rate of 9% (Siegel et al. 2017). Extensive sequencing
studies have uncovered recurrently mutated genes (KRAS, TP53,
SMAD4, CDKN2A) and dysregulated pathways (axon guidance,
cell adhesion, smallGTPase signaling, proteinmetabolism) driving
disease initiation and progression (Jones et al. 2008; Waddell et al.
2015; The Cancer Genome Atlas Research Network 2017). Gene
expression profiles fromhundreds of patient samples have allowed
the identification of several PDAC subtypes, with implications
for treatment response and patient outcome (Collisson et al.
2011; Moffitt et al. 2015; Bailey et al. 2016; Lomberk et al. 2018;
Tiriac et al. 2018; Maurer et al. 2019). Gene expression can be
dysregulated in cancer through a variety of mechanisms, includ-
ing genomic amplification/deletion, epigenetic modification,
and noncoding mutations in promoters/enhancers (Khurana
et al. 2013; Weinhold et al. 2014; Jones et al. 2015; D’Antonio
et al. 2017; Rheinbay et al. 2017). For example, recurrent non-
codingmutations in PDAC are enriched in promoters of cancer-as-
sociated genes and pathways (Feigin et al. 2017). However, our
understanding of the mechanisms driving dysregulated gene
expression in cancer remains incomplete. Determining the regula-
torymechanisms driving dysregulated gene expression is critical to
understanding disease pathogenesis. One such regulatory mecha-

nism that has recently gained recognition as a critical driver of
gene expression is alternative polyadenylation (APA).

APA is a post-transcriptional process that generates distinct
mRNA isoforms of the same gene as a mechanism to modulate
gene expression. This includes transcripts that have identical cod-
ing sequences but vary only in the length of their 3′ untranslated
region (UTR) (Elkon et al. 2013; Erson-Bensan and Can 2016;
Gruber and Zavolan 2019). Changes in 3′-UTR length can modu-
late mRNA stability, function, or subcellular localization through
disruption of miRNA or RNA-binding protein regulation (Elkon
et al. 2013; Mayr 2016; Tian and Manley 2017). APA is driven by
a large complex of polyadenylation factors that recognize a series
of highly conserved sequences within the 3′ UTR on the newly
synthesized pre-mRNAbefore cleavage and addition of the poly(A)
tail (Proudfoot 2011; Elkon et al. 2013; Shi and Manley 2015).
Because most transcripts contain multiple polyadenylation sites
(PAS), the choice of where to cleave is a critical determinant
of 3′-UTR length. In humans, a majority of genes (51%–79%) ex-
press alternative 3′ UTRs, demonstrating the widespread nature
of this process (Mayr 2019). Indeed, APA has roles in muscle
stem cell function, cell proliferation, chromatin signaling, plurip-
otent cell fate, cellular senescence, and other physiological pro-
cesses (Sandberg et al. 2008; Boutet et al. 2012; Lackford et al.
2014; Brumbaugh et al. 2018; Chen et al. 2018a). Recently,
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dysregulation of APA has gained recognition as a driver of tumori-
genesis (Sandberg et al. 2008;Mayr andBartel 2009;Masamhaet al.
2014;Miles et al. 2016; Chen et al. 2018b). APA factor expression is
altered in a variety of cancer types and promotes tumorigenesis by
regulating the expression of oncogenes (via loss of miRNA regula-
tion) and tumor suppressors (via disruption of competing-endoge-
nousRNAcross talk) (Masamhaet al. 2014;Li et al. 2015;Chenet al.
2018b; Mitra et al. 2018; Park et al. 2018). The relevance of APA in
cancer was established with the discovery of a systemic increase in
the usage of a proximal PAS leading to consistently shortened 3′

UTRsof oncogenes such as insulin like growth factor 2mRNAbind-
ing protein 1 (IGF2BP1), Rac family small GTPase 1 (RAC1), and
cyclin D2 (CCND2) (Mayr and Bartel 2009; Chen et al. 2018b).
Functional studies of the genes composing the APA machinery
have highlighted their relevance to tumor growth; for example,
in glioblastoma, overexpression of the APA factor NUDT21 (a re-
pressor of proximal 3′-UTR PAS usage) reduces tumor cell prolifera-
tion and inhibits tumor growth in vivo (Masamha et al. 2014).
Subsequently, a numberof pan-cancer analyses haveused standard
RNA-sequencing (RNA-seq) data to identify 3′-UTR shortening and
lengthening events across cancer types (Xia et al. 2014; LePera et al.
2015; Grassi et al. 2016; Feng et al. 2017; Ye et al. 2018). Although
these analyses have uncovered recurrent APA events across multi-
ple tumor types, they also detected tumor type–specific events
(Xue et al. 2018). Additionally, differential 3′-UTR processing has
been shown to drive tissue-specific gene expression (Lianoglou
et al. 2013). However, there has been no in-depth single-cancer
analysis with a sufficiently large patient cohort to unravel dis-
ease-specific APA alterations. Furthermore, none of the pan-cancer
studies have included PDAC owing to a lack of matched normal
controls and therefore, the landscape of APA in PDAC remains
completely uncharacterized.

To determine the relevance of APA in PDAC, we performed a
comprehensive analysis of the changes in PAS usage using RNA-
seq data from 148 PDAC tumors from The Cancer Genome Atlas
Pancreatic Adenocarcinoma (TCGA-PAAD) study and 184 normal
pancreata from the Genotype-Tissue Expression (GTEx) project
(The Cancer Genome Atlas Research Network et al. 2013; The
GTEx Consortium 2015). We performed a systems level analysis
to identify trends in APA, impacts on gene expression, and effects
of miRNA regulation. Our in-depth analysis reveals APA as a
recurrent, widespread mechanism underlying oncogenic gene ex-
pression changes through loss of tumor-suppressivemiRNA regula-
tion in pancreatic cancer.

Results

To analyze differences in APA profiles between tumor and normal
samples, we selected 148 patients out of the total 178 PDAC pa-
tients with aligned RNA-seq data from the TCGA-PAAD study.
We excluded 30 patients in the cohort that did not have histolog-
ically observable PDAC tumors (The Cancer Genome Atlas Re-
search Network 2017). Due to the paucity of RNA-seq data from
matched normal tissues within the TCGA-PAAD study, we pro-
cured raw RNA-seq reads from 184 normal pancreata from the
GTEx project. The library preparation and sequencing platform
were identical for the TCGA-PAAD study and GTEx pancreata
data (The GTEx Consortium 2015; The Cancer Genome Atlas Re-
searchNetwork 2017), therebyminimizing potential batch effects.
Several previous studies have successfully compared TCGA and
GTEx gene expression data, noting minimal batch effects when
processed in an identical manner (Kosti et al. 2016; Aran et al.

2017; Zeng et al. 2019). Therefore, these data sets were processed
identically and analyzed for differences in APA in our downstream
analyses (Supplemental Fig. S1). To allow a rigorous comparison
between GTEx normal pancreas and TCGA-PAAD tumor samples,
we aligned raw reads from the GTEx RNA-seq data per the TCGA
pipeline. We processed the tumor and normal aligned files to gen-
erate coverage files that were used to identify 3′-UTR differences.
We assessed the extent of differential batch effects by comparing
the variation in expression of housekeeping genes between the
two data sets (Eisenberg and Levanon 2003). We computed the
median expression (log2[normalized counts]) of housekeeping
genes from our coverage data and found a high correlation be-
tween the tumor and normal data sets (Pearson R=0.91, P<2×
10−16) (Supplemental Fig. S2A), suggesting that the two data sets
are comparable. The coverage data were used as an input for the
Dynamic Analysis of Alternative Polyadenylation from RNA-seq
(DaPars) algorithm (Xia et al. 2014). DaPars is a regression-based al-
gorithm that performs de novo identification of APA events be-
tween two conditions using standard RNA-seq data (Masamha
et al. 2014; Xia et al. 2014; Chen et al. 2018b). DaPars generates
a Percentage Distal Usage Index (PDUI) score for a given gene for
every sample. The PDUI score quantifies the relative poly(A) site
usage for that gene in the sample by computing the abundances
of 3′-UTR long and short forms. Genes favoring distal PAS usage
(long 3′ UTRs) have PDUI scores near 1, whereas genes favoring
proximal PAS usage (short 3′ UTRs) have PDUI scores near 0. The
final output was a PDUI matrix containing 2573 unique genes as
rows and tumor/normal sample in each column (total 148 tumor
+184 normal = 332 columns). To compare 3′-UTR changes for a
given gene between tumor and normal samples, the PDUI scores
for the gene were averaged over tumor (MeanPDUIT) and normal
(MeanPDUIN) samples. A change in themean PDUI score between
tumor and normal samples for each gene (ΔPDUI=MeanPDUIT−
MeanPDUIN) was calculated and used as a measure of tumor-asso-
ciated 3′-UTR shortening or lengthening.

Integrative analysis of GTEx and TCGA-PAAD RNA-seq data

identifies 3′-UTR shortening events associated with PDAC

To determine an appropriate ΔPDUI threshold to identify short-
ened/lengthened genes, we performed a permutation test (n=
10,000) and computed the adjusted P-values (Padj) for ±0.05,
±0.1, and ±0.15 thresholds. For a threshold of ±0.05, 23.8% of
genes showed Padj > 0.05, suggesting that this threshold can lead
to multiple false positives. However, zero genes showed Padj >
0.05 for the ±0.1 and ±0.15 thresholds (Supplemental Fig. S2B,C).
Therefore, we chose ΔPDUI=±0.1 as a stringent threshold to iden-
tify shortened/lengthened genes with minimum false positives/
negatives. To determine the extent of APA-mediated 3′-UTR short-
ening and lengthening in PDAC, we compared the PDUI scores for
each gene between the tumor and normal samples (Fig. 1A,B). Al-
though the majority of genes do not undergo changes in APA,
PDAC patients are characterized by a greater number of significant
3′-UTR shortening events (red dots, n =266) as compared to signifi-
cant lengthening events (blue dots, n=186) (Fig. 1B). A higher
number of 3′-UTR shortening events compared to lengthening
events in PDAC is consistent with patterns observed in multiple
pan-cancer analyses (Mayr and Bartel 2009; Xia et al. 2014; Xiang
et al. 2018). The tumor-associated shortening and lengthening
events were predominantly 100–300 bp and 200–300 bp in length,
respectively (Fig. 1C). Among the genes found to have significantly
shortened 3′-UTR lengths were many known PDAC growth-
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promoting genes, including PAF1 homolog, Paf1/RNA polymerase
II complex component (PAF1), filaminA (FLNA), enolase 1 (ENO1),
Ral guanine nucleotide dissociation stimulator (RALGDS), thyroid
hormone receptor interactor 10 (TRIP10), and aldolase, fructose-
bisphosphate A (ALDOA).ALDOA and PAF1have recently been de-
scribed as oncogenes in PDAC (Dey et al. 2014; Vaz et al. 2014; Ji
et al. 2016; Nimmakayala et al. 2018), whereas ENO1, RALGDS,
TRIP10, and FLNA are known tomediate pancreatic cancer cell pro-
liferation, survival and migration (Chien andWhite 2003; Li et al.

2009; Mihaljevic et al. 2010; Hsu et al. 2011; Zhou et al. 2011;
Capello et al. 2016). We did not detect 3′-UTR alterations in recur-
rently mutated PDAC genes, reflecting the predominant role of
APA in regulating gene expression rather than gene function. We
visualized the 3′-UTR profiles of these genes between TCGA and
GTEx samples to confirm3′-UTR shortening (see FLNA, PAF1 as ex-
amples) (Fig. 1D).

PDAC samples are often characterized by substantial stromal
contamination (Maurer et al. 2019); therefore, we sought to

E

F

BA C

D

G

Figure 1. Integrative analysis of RNA-seq data identifies 3′-UTR alterations associated with PDAC. (A) A plot of PDUI score of each gene in human tumor
and normal samples. Dashed lines represent 0.1 cutoffs. Blue dots represent 3′-UTR-lengthened genes, and red dots represent 3′-UTR-shortened genes.
(B) A volcano plot denoting 3′-UTR-shortened (red) and -lengthened (blue) gene hits (FDR<0.01) whose |ΔPDUI| > 0.1. (C) A plot showing the number
of base pairs lost/gained by 3′-UTR-altered genes. (D) UCSC Genome Browser plot depicting the 3′-UTR RNA-seq density profile of two 3′-UTR-shortened
genes (FLNA and PAF1) to highlight the coverage differences between tumor (orange) and normal (purple) patient samples. (E) UCSCGenome Browser plot
highlighting the 3′-UTR profile differences between FLNA and PAF1 in a microdissected data set in patient tumor (red) and stroma (blue). (F) 3′ RACE of
altered PDAC-associated genes in MIA PaCa-2 and Suit2 cells (representative images, n=3). Approximate length of the 3′-UTR form is denoted beside
each band. (G) 3′ RACE of select genes in primary patient samples (P1, P2, P3).
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determine if significant APA events were present in the stroma or
the tumor epithelium. First, we determined for every significant
gene hit in our analysis whether sample purity is correlated with
the PDUI score. The measure of purity considered for each sample
was the pathologist-reviewed tumor cellularity score (The Cancer
Genome Atlas Research Network 2017). However, none of our
significant gene hits showed a significant correlation (Pearson’s
R>0.3, P<0.05) between PDUI score and tumor purity. We then
analyzed PDUI changes in a subset of 69 high purity TCGA-
PAAD tumor samples (>33% tumor content) (The Cancer Genome
Atlas Research Network 2017). Eighty-nine percent of gene hits
from our original analysis showed up as significant hits in the
high purity data set, suggesting that the majority of the detected
APA changes were not attributable to stromal contamination
(Supplemental Fig. S3A,B). We further addressed this concern by
visualizing the 3′-UTR profile of our candidate genes in an inde-
pendent data set containing RNA-seq information from 65
matched human PDAC samples with microdissected tumor epi-
thelium and stroma (Maurer and Olive 2019; Maurer et al. 2019).
As an example, Figure 1E shows the differential 3′-UTR shortening
of FLNA and PAF1 in patient tumor epithelium (tumor cells) as
compared to the matched stroma.

We validated the presence of alternative 3′-UTR forms for sev-
eral APA-regulated candidate genes by 3′ RACE (rapid amplification
of 3′ ends) in two human pancreatic cancer cell lines (Suit2,
MIA PaCa-2) and primary patient samples (Fig. 1F,G). These genes
included the previously described PDAC growth-promoting genes,
as well as the spermine/spermidine N1-acetyltransferase 1 SAT1,
and protein phosphatase 2 regulatory subunit Bdelta (PPP2R2D).
SAT1 modulates cell migration and resistance in multiple tumor
types, whereas PPP2R2D is a component of the tumor-suppressive
phosphatase PP2A (Vandenberg 2008; Seshacharyulu et al. 2013;
Brett-Morris et al. 2014; Phanstiel 2018; Yu et al. 2018; Fahrmann
et al. 2019). With the exception of PPP2R2D, which displayed sig-
nificant 3′-UTR lengthening and down-regulation in tumors, all
of the validated genes were significantly shortened and overex-
pressed in the TCGA-PAAD data set. We detected 3′-UTR short
and long forms via 3′ RACE. The short 3′-UTR form for themajority
of the shortened genes predominated over the long form (Fig. 1F,
G). ENO1 showed a single 3′-UTR form suggesting that this is the
predominant form in cancer cells. In contrast, PPP2R2D showed
an increased proportion of the 3′-UTR long form in PDAC cell lines
and patient samples as compared to the short form, suggesting
greater use of the distal PAS for this putative tumor-suppressive
gene. For every candidate, we successfully identified PAS siteswith-
in its 3′-UTR sequence thatmatched the expected position of prox-
imal and distal PAS in the detected 3′ RACE forms (Supplemental
Fig. S3C). Therefore, a large-scale comparison of 3′-UTR alterations
can identify tumor epithelium-specific changes from the TCGA
and GTEx data sets, and these 3′-UTR forms can be detected in
cell models and patient samples.

3′-UTR changes are widespread among PDAC patients

and enriched in PDAC pathways

To visualize the landscape of APA across PDAC, we clustered pa-
tients (columns) based on change in PDUI score (tumor − normal
mean; ΔPDUI) for 3′-UTR-altered genes (rows) (Fig. 2A). This anal-
ysis uncovered a subset of genes (n =68) that showed 3′-UTR short-
ening (red) in >90% of patients, highlighting the widespread
nature of APA across PDAC. A smaller subset of 3′ UTRs (n=26, bot-
tom heatmap) was recurrently lengthened (blue) in the tumor co-

hort. Hierarchical clustering identified multiple patient subgroups
characterized by 3′-UTR alterations of specific gene sets (Subgroups
1–5). Subgroup 5was enriched in shortened 3′ UTRs and contained
relatively few lengthening events. In contrast, Subgroup 1 dis-
played fewer 3′-UTR shortening events and was enriched in
3′-UTR lengthening. Subgroups 2–4were characterized by shorten-
ing events in specific subsets of genes. These subgroups did not
correlate with the mutational status of recurrently mutated
PDAC genes (KRAS, CDKN2A, SMAD4, TP53), nor did they associ-
ate with previously described PDAC subtypes.

Pathway analysis of the significantly altered genes revealed
enrichment for mRNA 3′ end processing and splicing, as well as
smooth muscle contraction and platelet activation. Similar path-
ways have been found by pan-cancer APA analyses, concordant
with the presence of recurrent APA events across multiple cancer
types (Lianoglou et al. 2013; Xia et al. 2014). However, weobserved
further enrichments in PDAC-associated pathways, including pro-
tein metabolism, signaling by receptor tyrosine kinases, signaling
by RHO GTPases, JAK-STAT signaling, and cell–extracellular ma-
trix interactions (Fig. 2B). Therefore, APA alterations may regulate
the activity of PDAC-promoting pathways.

3′-UTR shortening identifies a poor prognostic cohort

in PDAC patients

Next,weaskedwhetherAPAevents addedadditional prognostic in-
formation toPDACpatientoutcomesabove theusualdemographic
and clinical factors: age, race, sex, stage, grade, and surgical out-
come. We selected genes with significant 3′-UTR alterations and
univariate prognostic value, defining prognostic classes based on
multivariate clustering (Fig. 3A). This segregated patients into three
cohorts based on their 3′-UTR patterns (long inblue; short in red).
Cohort A was predominantly associated with proximal PAS usage
of genes from Groups 1 and 3, whereas Cohort C was associated
with distal PAS usage of the same genes. For Group 2 genes, distal
PAS usage was predominant in Cohort A, but proximal PAS usage
was predominant in Cohort C. Neither patient cohort correlated
with anyof the knownPDAC tumor subtypes. Cohorts A andCdis-
played significant differences in overall survival, with patients in
Cohort C living significantly longer than those in Cohort A (P=
0.003) (Fig. 3B). Therefore, patterns of APA can be used as an inde-
pendent prognostic indicator in PDAC.

Heterogeneity of proximal PAS usage of metabolic genes

in PDAC patients

Processes generating genetic and epigenetic heterogeneity can
drive tumor evolution (Easwaran et al. 2014; McGranahan and
Swanton 2017; Hinohara and Polyak 2019). We hypothesized
that APA could represent such a process, creating a diverse set of
3′-UTR forms and allowing cancer cells to select for those that pro-
mote their survival and propagation. To examine this heterogene-
ity, we compared the variance of proximal PAS usage across
patients in any given gene between tumor and normal samples.
ALDOA is shown as an example gene that exhibited a tight distri-
bution of PAS usage across normal as well as patient tumors (Fig.
4A). The left shift of the tumor sample mean score represents an
increased proximal PAS usage signifying the expected shortening
of the ALDOA 3′ UTR. However, for FLNA, although the normal
samples had a tight distribution, PDAC patients showed greater
heterogeneity in PAS usage (Fig. 4B). An analysis of heterogeneity
in PAS usage for all genes revealed that although the majority of
genes did not show a significant change between normal and
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tumor conditions, 89 genes showed greater heterogeneity in tu-
mor (orange) samples and only eight genes showed greater hetero-
geneity in normal (purple) samples (Fig. 4C). This heterogeneity
was not attributable to intrinsic differences between the TCGA
and GTEx data sets, because none of the 215 housekeeping genes
in the data set showed differences in heterogeneity in the extent of
proximal PAS usage (Zhu et al. 2008; Eisenberg and Levanon
2013). The subset of 89 genes was enriched in metabolic genes,

specifically amino acid transporters and
purine metabolism. Increased heteroge-
neity of PAS usage in PDAC patients sug-
gests a possible role of PAS usage
plasticity in promoting cancer cell sur-
vival and progression.

APA drives altered protein expression in

PDAC

To determinewhether the identified APA
events drive altered gene expression in
PDAC, we computed differential gene ex-
pression between normal (GTEx) and tu-
mor (TCGA-PAAD) tissues. This allowed
association studies between specific APA
events and changes in gene expression.
Among 3′-UTR-shortened genes, 76
were significantly up-regulated, and 50
genes were significantly down-regulated
in tumors (Fig. 5A,B). Increased gene ex-
pression in the subset of 76 genes con-
forms to the expectation that 3′-UTR-
shortened genes can escape miRNA regu-
lation leading to increased gene expres-
sion (Lee and Dutta 2007; Mayr et al.
2007; Mayr and Bartel 2009). However,
the association of 3′-UTR-shortened
genes with up-regulation was not statisti-
cally significant (Fisher’s exact test, P=
0.09). 3′-UTR-lengthened genes showed
a similarnumberof significantly up-regu-
lated (n=42) and significantly down-reg-
ulated (n=41) genes, consistent with
pan-cancer analyses, and most likely
reflective of positive and negative regula-
tion by RNA-binding proteins (Matoul-
kova et al. 2012; Pereira et al. 2017;
Chen et al. 2018a). To experimentally
validate the relationship between APA
and protein expression, we performed lu-
ciferase reporter assays in MIA PaCa-2
cells, comparing protein expression driv-
enbyshort and long3′ UTRs (Fig. 5C).We
focused on the candidate oncogenes and
tumor suppressors validated by 3′ RACE
and that showed significant association
between 3′-UTR changes and gene ex-
pression in tumors. These candidates in-
cluded ALDOA, FLNA, PAF1, TRIP10,
ENO1, SAT1 (shortened and up-regulated
in tumors), and PPP2R2D (lengthened
and down-regulated in tumors). We also
included RALGDS, which is shortened

but does not show altered expression in tumors. We cloned the
short and long 3′ UTRs of each gene (estimated via 3′ RACE) down-
stream from a Renilla luciferase reporter and measured lumines-
cence as a readout of protein expression (Fig. 5C). To ensure that
the long 3′-UTR form for each reporter gene remained intact (i.e.,
did not undergo APA-mediated shortening upon transfection
into cells), wemutated their functional proximal PAS. For all genes
tested except ENO1 and RALGDS, the short 3′-UTR form showed

B

A

Figure 2. 3′-UTR changes are widespread among PDAC patients and enriched in PDAC pathways. (A)
The heatmap shows genes (rows) undergoing 3′-UTR shortening (red) or lengthening (blue) in each pa-
tient tumor (columns) compared to median score in normal pancreas for that gene. The profile of KRAS,
CDKN2A, TP53, and SMAD4 mutations as well as tumor subtype is shown in the context of distinct
APA-derived patient subgroups. (B) Significantly enriched (FDR <0.05) reactome pathways associated
with 3′-UTR-altered genes.
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significantly increased luminescence compared to the long 3′-UTR
form (Fig. 5D). As predicted, the 3′-UTR short and long forms of
RALGDS showed similar expression. In contrast to our expecta-
tions, the short formof ENO1 showeddecreasedprotein expression
suggesting that 3′-UTR shortening is not the solemechanism regu-
lating protein abundance of ENO1 in PDAC. To further show that
the expression changes driven by the short and long 3′-UTR forms
are governed by the sequence content andnot simply a function of
3′-UTR length, we cloned the reverse complement of the long 3′-
UTR segment of PAF1 downstream from its short 3′ UTR. The prox-
imal PAS was mutated to prevent APA-mediated shortening of this
control construct (Supplemental Fig. S4A). As expected, this con-
struct showed similar luminescence as the short 3′-UTR form, sug-
gesting that the observed expression differences are primarily a
function of sequence content within
the long 3′ UTR (Supplemental Fig. S4B).
These findings reinforce the observation
that gene regulation is 3′-UTR sequence–
dependent and that shorter 3′ UTRs do
not always increase protein expression
(Mayr and Bartel 2009). Overall, the
above results show that APA-mediated
3′-UTR alterations can regulate the pro-
tein expression of growth-promoting
genes in PDAC cells.

We next sought to determine the
mechanism underlying the 3′-UTR-
mediated gene regulation of the PDAC
oncogene ALDOA. Given that miRNAs
primarily destabilize their target mRNA
and thatALDOA undergoes 3′-UTR short-
ening andup-regulation,we searched the
ALDOA 3′ UTR for putative miRNA bind-
ing sites that would be lost upon PDAC-
associated shortening (Fig. 5E). We
identified the tumor-suppressive miRNA
miR-122 within this lost region; miR-
122 is expressed in PDAC cell lines (Tsai
et al. 2009; Zhang et al. 2009). Mutation
of the miR-122 site within the long 3′

UTR of ALDOA significantly restored
protein expression (Fig. 5F). Therefore,
altered APA can regulate oncogene ex-

pression in PDAC through modulation of available regulatory
miRNA binding sites.

APA-mediated loss of tumor-suppressive miRNA binding sites is

associated with poor patient outcome

To assess global patterns of APA-mediated miRNA binding site
loss, we searched for highly conserved miRNA binding sites (con-
served across human, mouse, rat, dog, and chicken) within the
lost 3′ UTRs of all shortened genes. This analysis revealed that
42% of genes lost at least one highly conserved miRNA binding
site (Fig. 6A), suggesting that alteration of the miRNA binding
site repertoire is a common mode of APA-mediated regulation.
Next, we sought to determine if any miRNA families were

A B

Figure 3. APA events identify a poor prognostic cohort in PDAC patients. (A) Patients were clustered based on 3′-UTR short (red) and long forms (blue) of
3′-UTR-altered genes (clustered into gene Groups 1, 2, and 3) and segregated into patient Cohort A (blue), patient Cohort B (black), and patient Cohort C
(green). (B) Kaplan–Meier survival plot for patient Cohort A (blue), patient Cohort B (black), and patient Cohort C (green): (∗) P<0.05.

A

C

B

Figure 4. PDAC patients show substantial heterogeneity in the extent of proximal PAS usage of met-
abolic genes. (A) Example of a 3′-UTR-shortened gene (ALDOA) that has a tight distribution of its proximal
PAS usage in normal pancreas (purple) as well as PDAC patients (orange). (B) A 3′-UTR-shortened gene
(FLNA) that has a tight distribution in normal pancreas (purple); however, the extent of proximal PAS us-
age varies greatly across PDAC patients (orange). (C ) Plot of variance in PDUI for all genes between tumor
and normal. Purple dots represent genes with high variance in normal samples, and orange dots repre-
sent genes with high variance in tumor samples. Dashed lines represent 0.015 and −0.015 cutoffs.
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preferentially lost in shortened 3′ UTRs of PDAC patients. We
computed an index for repression for each miRNA family as a
function of the miRNA site context scores (obtained from
TargetScan) and the abundance of the 3′-UTR form containing
that site. This index was then compared between PDAC patients
and normal controls to yield a Z-score. A lower Z-score for a
miRNA family reflects preferential loss of its binding sites because
of 3′-UTR shortening. We focused on the top eight miRNAs,
because after the eighth miRNA, all subsequent significantly
lost miRNAs had similar Z-scores (near −1) and all eight are ex-
pressed in pancreatic cancer cell lines (Zhang et al. 2009). Six of
these top eight miRNAs have been implicated as tumor suppres-
sors in PDAC, including miR-329 and miR-133a (Fig. 6B; Dangi-
Garimella et al. 2011; Qin et al. 2014; Wang et al. 2016;
Baradaran et al. 2019; Wang et al. 2019). These results suggest
that APA regulates oncogenic gene expression through preferen-

tial loss of tumor-suppressive miRNA
binding sites and may therefore confer
a selective advantage to the cell.

Next, we determined whether loss
of specific miRNA sites associated with
3′-UTR alterations is associated with pa-
tient outcome. We quantified loss of
highly conserved miRNA binding sites
for each patient as a function of the ex-
tent of proximal PAS usage in all genes
that lost those miRNA sites (Methods).
Clustering in themiRNA feature space re-
vealed three patient groups (Fig. 6C) with
significant differences in overall survival
(P=0.012 between Clusters 1 and 3)
(Fig. 6D). We also performed the analysis
of deviance test of the nested Cox regres-
sion model: clinical variables versus clin-
ical +miRNA clusters. We found that
addition of miRNA clusters significantly
improved the model. In terms of magni-
tude of effect, the hazard ratios associat-
ed with the miRNA clusters (Cluster 1/
Cluster 3 as reference) were HR=0.59
and HR=0.44. For context, the strongest
significant clinical effect is HR=0.52 for
R0 surgical status. This suggests the
miRNA-usage-based modeling is at least
as strong as clinical variables. The
miRNAs most significantly associated
with the patient clusters included miR-
133a, miR-124, miR-421, miR-143, and
miR-505. Binding sites for each miRNA
were preferentially lost from Cluster 1
as compared with Cluster 3, suggesting
that loss of these regulatory sites corre-
lates with poor survival of PDAC patients
(Fig. 6E). Indeed, miR-133a, miR-124,
and miR-143 are known tumor suppres-
sors in PDAC, again supporting the role
of APA in selective loss of tumor-suppres-
sive miRNA binding sites (Kent et al.
2010; Hu et al. 2012; Kojima et al. 2012;
Pham et al. 2013; Qin et al. 2014;
Schultz et al. 2014; Wu et al. 2018).

The APA-regulated gene CSNK1A1 is required for proliferation

and clonogenic growth of PDAC cells

Our analyses revealed APA-mediated regulatory changes in genes
known to promote PDAC pathogenesis. We hypothesized that
our altered gene list may also contain growth-promoting genes
not previously implicated in PDAC biology, and therefore new
therapeutic targets. We focused on the subset of druggable genes
that were significantly shortened and up-regulated in PDAC.
This analysis identified CSNK1A1, the gene encoding the serine/
threonine kinase casein kinase 1 alpha 1 (CSNK1A1, also known
as CK1alpha or CK1a). CSNK1A1 regulates the Wnt/β-catenin sig-
naling pathway and has dual functions in cell cycle progression
and cell division (Knippschild et al. 2005; Schittek and Sinnberg
2014; Cai et al. 2018). CSNK1A1 is known to influence tumor pro-
gression; however, its role as a tumor suppressor or oncogene is

A B

C D

E F

Figure 5. APA drives altered protein expression in PDAC. (A) Log fold change in gene expression is plot-
ted against ΔPDUI for 3′-UTR-altered genes. Overexpressed genes (red dots) and underexpressed genes
(blue dots) on the left represent 3′-UTR-shortened hits, whereas those to the right represent 3′-UTR-
lengthened hits. (B) Quantification of 3′-UTR-altered genes that are overexpressed (red) or underex-
pressed (blue) in PDAC tumors. (C) Schematic illustrating the luciferase reporter constructs.
(D) Normalized fold expression change of the luciferase reporter (short 3′ UTRs/long 3′ UTRs) for the se-
lected list of 3′-UTR-altered genes (n=3). The long 3′-UTR expression for each gene is normalized to
1. Each whisker plot denotes the median as the centerline and the minimum and maximum values as
the whiskers: (∗) P<0.05; (∗∗) P<0.01; (∗∗∗) P<0.005; (∗∗∗∗) P<0.001. (E) Schematic showing the
ALDOA 3′ UTR with positions of conserved miRNA sites as well as the miRNA mutant construct used.
(F) Fold expression change of miRNA mutant construct compared to the PAS mutant in luciferase assays
(n=3). The PAS mutant expression is normalized to 1.
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tumor type–dependent (Järås et al. 2014; Schittek and Sinnberg
2014; Lantermann et al. 2015; Cai et al. 2018), and CSNK1A1
has no known roles in PDAC. CSNK1A1 has very low gene expres-
sion in normal pancreas but is overexpressed in PDAC (Jiang et al.
2018).We found that CSNK1A1 shows significantly higher expres-
sion in the PDAC epithelium as compared to precursor lesions—
premalignant pancreatic intraepithelial neoplasia (PanIN) (Fig.
7A) and intraductal papillary mucinous neoplasia (IPMN). We
found no significant difference in CSNK1A1 expression in the
stroma between PDAC and precursor lesions. 3′ RACE showed
that CSNK1A1 has both the short and long 3′-UTR forms in
PDAC cells as predicted by our computational analysis
(Supplemental Fig. S5A).

To provide genetic evidence for the
role of CSNK1A1 in PDAC cell growth,
we knocked down CSNK1A1 in Suit2
and MIA PaCa-2 cells with three short
hairpin RNAs (shRNA) (Fig. 7B; Supple-
mental Fig. S5B). CSNK1A1 knockdown
decreased both cell proliferation and clo-
nogenic growth of PDAC cells (Fig. 7C–E;
Supplemental Fig. S5C,D), with Suit2
cells showing increased sensitivity to
CSNK1A1 loss. The strongest phenotypic
effects were associatedwith themost effi-
cient knockdown (shRNA 3) in both cell
lines. We then investigated the potential
of CSNK1A1 as a pharmacological target
in PDAC biology with the widely used
small molecule inhibitor D4476 (Rena
et al. 2004; Lantermann et al. 2015; Jiang
et al. 2018). In concordance with the ge-
netic evidence, although MIA PaCa-2
and Suit2 cells were both sensitive to
D4476 treatment, Suit2 cells displayed a
10-fold lower IC50 (Fig. 7F). Both cell
lines also showed dose-dependent de-
creases in cell proliferation (Fig. 7G; Sup-
plemental Fig. S5E) and clonogenic
growth in the presence of the inhibitor
(Fig. 7H,I; Supplemental Fig. S5F). There-
fore, we identify CSNK1A1 as a putative
drug target inPDACand reveal thepoten-
tial of cancer-specific APA analyses to
identify mechanisms of altered gene ex-
pression driving cancer pathogenesis.

Discussion

Dysregulated gene expression is a cardi-
nal featureof cancer (Yaffe 2019).Howev-
er, how gene expression is altered in
cancer andwhether the processes driving
this dysregulation can be targeted thera-
peutically are areas of active investiga-
tion. APA has recently been identified as
a candidate driver of gene expression dys-
regulation. APA factors frequently show
aberrant expression in cancer, modulate
the expression of known oncogenes and
tumor suppressors, and knockdown stud-
ies have highlighted their relevance to

the cancer phenotype (Masamha et al. 2014; Miles et al. 2016;
Chen et al. 2018b; Mitra et al. 2018; Tan et al. 2018; Chu et al.
2019). Whole-genome CRISPR and shRNA screens have also re-
vealed the requirement for several APA factors in pancreatic cancer
cell growth (https://www.depmap.org). Global analyses have re-
vealed widespread 3′-UTR changes across multiple cancer types,
uncovering recurrent alterations common across the cancer spec-
trum (Xia et al. 2014; Grassi et al. 2016; Feng et al. 2017; Ye et al.
2018). Recent findings suggest that although some APA events
are widely shared across cancers, many are tumor type–specific
(Xue et al. 2018). Despite this observation, there have been few at-
tempts to study APA in a single tumor typewith sufficient power to
identify tumor-specific alterations and vulnerabilities.

A B

C D

E

Figure 6. APA-mediated loss of tumor-suppressive miRNA binding sites is associated with poor patient
outcome. (A) Number of genes that lose highly conserved miRNA binding sites because of 3′-UTR short-
ening. The percentage of genes that lose at least one miRNA binding site is indicated above the bracket.
(B) Highly conserved miRNA families were plotted against their Z-score, an index of the lost binding sites
in which a more negative Z-score indicates more significant binding site loss. (C ) t-SNE plot depicting
TCGA patient clusters in the highly conserved miRNA feature space. (D) Kaplan–Meier survival plot
for the three patient clusters identified in C: (∗) P<0.05 for Cluster 1 to Cluster 3 comparison.
(E) Heatmap depicting the association of miRNA binding site loss (miR score) with patient clusters.

Venkat et al.

8 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2020 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257550.119/-/DC1
https://www.depmap.org
https://www.depmap.org
https://www.depmap.org
https://www.depmap.org
https://www.depmap.org
http://genome.cshlp.org/
http://www.cshlpress.com


To our knowledge, this study represents the first global, in-
depth, single-cancer view of APA, and the first examination of
APA in PDAC clinical samples. The only previous study of APA
in PDAC showed gemcitabine-induced 3′-UTR shortening of the
transcription factor ZEB1 in the context of drug resistance
(Passacantilli et al. 2017). Previous APA analyses combined multi-
ple tumor types and used tumor-adjacent tissue as a “normal” con-
trol. However, matched tumor-adjacent normal tissues are known
to represent a state that significantly differs from healthy, normal
tissues and may therefore miss critical APA events (Aran et al.
2017). Furthermore, there are insufficient numbers of tumor-adja-

cent pancreatic samples within TCGA for a statistically stringent
analysis. Therefore, we attempted to address these issues by using
normal pancreas RNA-seq information from the GTEx project. A
limitation of comparing independently collected data sets is the
inherent disparity between them (Lappalainen et al. 2013). We at-
tempted to rectify this by (1) confirming that the two data sets un-
derwent identical library preparationmethods on the same type of
sequencing platform; (2) following identical data processing pipe-
lines from the raw sequencing data to generate the coverage data;
and (3) validating our top hits in an independent microdissected
data set. Consistent with previous publications comparing TCGA

BA
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F GE
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Figure 7. CSNK1A1 is required for cell proliferation and is a putative drug target in PDAC. (A) A plot showing CSNK1A1 gene expression (in transcripts per
million) in PDAC (red) as compared to PanIN lesions (green) in the epithelium and stroma from microdissected samples: (∗∗∗∗) P<0.001. (B) A represen-
tative blot confirming CSNK1A1 knockdown in Suit2 cells with a nontargeting control shRNA (Con shRNA) or with one of three different shRNAs targeting
CSNK1A1: n =3. ACTB (also known as actin beta) is shown as a loading control. (C) Cell proliferation of Suit2 control and CSNK1A1-knockdown cells: n=
3; (∗∗∗) P<0.005. (D) Clonogenic growth assay of control and CSNK1A1-knockdown cells: n =3. (E) Quantification shows the number of colonies in D: n
=3; (∗∗∗∗) P<0.001. (F) Dose-response of MIA PaCa-2 (purple) and Suit2 (red) cell lines to the CSNK1A1 small molecule inhibitor, D4476: n=3. (G) Cell
proliferation of Suit2 cells treated with indicated doses of D4476: n=3; (∗∗∗∗) P<0.001. (H) Clonogenic growth assay of Suit2 cells treated with indi-
cated drug doses. (I) Quantification shows the number of colonies in H: (∗∗∗) P<0.005; (∗∗∗∗) P<0.001.
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and GTEx data sets, we compared the expression of housekeeping
genes between the two data sets and observedminimal differences.
Because batch effects cannot be completely ruled out, we
performed experimental validation of several candidate APA-regu-
lated genes, including PAF1 and ALDOA, highlighting the robust-
ness of our approach and relevance of our findings to PDAC
biology. Furthermore, this approach will allow the analysis of
APA in other tumor types for which little tumor-adjacent material
is present in TCGA.

Multiple insights from our analyses are noteworthy. We find
that APA events are recurrent and widespread across PDAC pa-
tients. For example, 68 genes were shortened and 28 genes were
lengthened in >90% of the patient cohort. This supports the con-
jecture that APA dysregulation is a frequent event in PDAC. In sup-
port of this hypothesis, we find that several APA factors are highly
expressed in PDAC, including CSTF2 (Supplemental Fig. S6).
CSTF2 has previously been implicated as a promoter of lung and
bladder cancer, through the regulation of ERBB2 and RAC1 3′

UTRs, respectively (Chen et al. 2018b; Mitra et al. 2018). We find
frequent 3′-UTR alterations in several PDAC-relevant genes whose
mechanisms of regulation were previously unknown, including
PAF1, ALDOA, and FLNA. Many of the shortened 3′ UTRs showed
increased gene expression, providing the first collection of 3′-UTR
alterations that correlate with gene expression changes in PDAC.
We were able to functionally validate these through luciferase re-
porter assays, highlighting the robustness of our analysis.
Consistent with pan-cancer APA analyses, we find enrichment
for pathways such as smooth muscle contraction and mRNA 3′-
end processing (Lianoglou et al. 2013; Xia et al. 2014; Chen et al.
2018a). However, we also find enrichment for pathways and pro-
cesses implicated in PDAC biology, including proteinmetabolism,
receptor tyrosine kinase signaling, and signaling by RHOGTPases.
Indeed, the link between 3′-UTR alterations and cancer metabo-
lism has been identified in previous pan-cancer APA analyses
(Xia et al. 2014). We also find an unexpected enrichment for loss
of binding sites for tumor-suppressive miRNAs in frequently lost
3′-UTR regions. Therefore, we propose that APA is an underappre-
ciated mechanism of gene dysregulation in PDAC, driving the ex-
pression of growth-promoting genes through disruption of
miRNA-mediated regulation.

The extent of heterogeneity in proximal PAS usage across can-
cer patients has been largely overlooked in previous pan-cancer
APA analyses. We found little heterogeneity in the extent of
3′-UTR proximal site usage inmost genes (including housekeeping
genes) in both normal and PDAC samples, again providing evi-
dence for minimal batch effects. However, PDAC patients showed
substantial heterogeneity in the extent to which their metabolic
genes used the proximal PAS. This metabolic plasticity in turn
could serve as a mechanism to deal with the fluctuating metabolic
demands of cancer cells. These data support the possibility that
APA may drive deregulation of cancer metabolism and tumor evo-
lution by allowing for PAS choice plasticity of critical metabolic
genes in PDAC.

Several studies have shown the power of APA analysis to im-
prove expression-basedprognosticmarkers.We report the first sub-
set of 3′-UTR alterations that act as an independent prognostic
indicator of PDAC outcome. Although several of the genes in this
set are known regulators of tumorigenesis, including SAT1, many
have not been implicated in PDAC biology and may represent
newmediators of cancer phenotypes. The lost miRNA sites are en-
riched for tumor-suppressive miRNA families. In particular, we ob-
served that patients who retain binding sites for a subset of five

miRNAs survive longer thanpatientswho lose them.This uncovers
theprognostic role for anovel subset ofmiRNAmediators inPDAC.

Our in-depth analysis of APA in PDAC revealed a critical role
for the druggable target CSNK1A1 in PDAC cell growth and sur-
vival. Although CSNK1A1 regulates Wnt signaling and the TP53
pathway, mediators of PDAC progression, the relevance of
CSNK1A1 to PDACwas previously unknown (Järås et al. 2014; Lan-
termann et al. 2015; Cai et al. 2018; Jiang et al. 2018). Furthermore,
the mechanisms of regulation of CSNK1A1 in cancer are not well
understood, although promoter methylation in melanoma has
been reported (Sinnberg et al. 2010). Two CSNK1A1 isoforms
have been detected in HeLa cells, with the shorter isoform being
generated from the use of an alternative PAS (Yong et al. 2000).
We show that CSNK1A1 exhibits increased expression in PDAC
samples as compared to precursors, and that pharmacological
and genetic blockade of CSNK1A1 attenuates PDAC cell prolifera-
tion and clonogenic growth. Therefore, our single-cancer approach
can identify APA-regulated, disease-specific vulnerabilities.

Our computational analysis and experimental validation
have revealed unexpected mediators of PDAC biology and broad-
ened our understanding of the regulatory role of 3′-UTR sequence
space in cancer. This comprehensive analysis reveals the scope of
previously uncharacterized APA events in regulating functionally
relevant PDAC genes, improving patient prognosis and driving tu-
mor evolution. We propose that the landscape of 3′-UTR alter-
ations in PDAC represents a novel avenue to better understand
PDAC progression and identify new drug targets.

Methods

Data collection and preprocessing

Our study focused on PDAC tumors consistent with the histology
of PDAC (n=148). All raw RNA-seq data used in this study were
downloaded via NCBI dbGaP after our request for controlled-ac-
cess datawas processed. This included 184 normal pancreas SRA fi-
les from GTEx (dbGaP accession phs000424.v8.p2) and 148 BAM
files within the TCGA-PAAD cohort (https://portal.gdc.cancer
.gov/). GTEx SRA files were aligned exactly according to the
TCGA RNA-seq alignment pipeline using GENCODE v22 annota-
tions. The bedGraph files were generated using BEDTools v2.26
(Quinlan and Hall 2010) and were supplied as input to the
DaPars algorithm.

DaPars analysis

The bedGraph coverage files were processed using DaPars (Python
2.7.13) for de novo identification of differences in 3′ UTR between
tumor and normal samples. The output of DaPars is a matrix of
PDUI scores for every sample (columns) for any given gene
(rows). Each cell represented a PDUI score for a gene corresponding
to the tumorornormal sample.ThePDUI score for a givengene rep-
resents the percentage of distal PAS usage in the sample. A higher
PDUI score represents greater usage of the distal PAS site. In order
to compare 3′-UTR changes for a given gene between tumor and
normal samples, the PDUI scores for the genewas averaged over tu-
mor samples (MeanPDUIT) and normal (MeanPDUIN) samples. A
change in the mean PDUI score between tumor and normal sam-
ples for each gene (ΔPDUI=MeanPDUIT−MeanPDUIN) was com-
puted as a measure of 3′-UTR differences. The significance of this
difference was assessed by the algorithm using Fisher’s exact test,
which was further adjusted using the Benjamini–Hochberg (BH)
procedure (Benjamini and Hochberg 1995) to control the false dis-
covery rate using 0.05 as a threshold to select significant hits. The
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final output of our analysis after eliminating redundant transcripts
(based on lowest FDR) and selecting for protein-coding transcripts
wasamatrix containing2573uniquegenes as rows and tumor/nor-
mal sample in each column (total 148 tumor+184 normal = 332
columns).Given that our samples arenotmatched,wedidnot gen-
erate a ΔPDUI value for a given gene for every sample, rather we
haveauniqueΔPDUIvalue for everyoutputtedgene.A similaranal-
ysis was performed with a subset of 69 high purity PDAC tumor
samples (The Cancer Genome Atlas Research Network 2017).

Bioinformatics analyses and statistical methods

Analysis of heterogeneity

The variance in PDUI scores across tumor samples (Var[Tumor]) as
well as normal samples (Var[Normal]) was computed for every
gene as a measure of its heterogeneity in PAS site usage across sam-
ples. The difference in variance/heterogeneity between the two
data sets (Var[Normal]−Var[Tumor]) was plotted (R version
3.6.0) (R Core Team 2014). The significance of the difference for
each gene was assessed using an F test of variances.

Heatmap analysis

A heatmap representing the extent of 3′-UTR alterations across
PDAC patients was generated (R version 3.6.0). Given that we do
not have a ΔPDUI value for each patient, we computed an estimate
of ΔPDUI associated with each patient for any given gene, using
the following approach. For each significant gene hit (|ΔPDUI| >
0.1, row in heatmap), the mean GTEx PDUI score was subtracted
from the PDUI score for each TCGA PDAC patient to obtain amea-
sure of ΔPDUIpatient (change in 3′-UTR length for that gene for each
patient). We implemented unsupervised hierarchical clustering
using Ward’s minimum variance method, to minimize the inter-
cluster Euclidean distances. Rows were similarly clustered to yield
subsets of genes undergoing a higher degree of 3′-UTR shortening
(red) or lengthening (blue). Five distinct subgroups are presented
to visualize the patterns of widespread 3′-UTR shortening among
patients. The mutational status of commonly altered PDAC genes
and PDAC subtype for each TCGA patient was highlighted (The
Cancer Genome Atlas Research Network 2017).

Survival analysis

We first fit a complex clinicalmodel including diagnosis age, stage,
grade, residual tumor, sex, and race. Residuals from this model re-
flect signal not explained by the standard clinical subspace. PDUI
scores associated with the residuals were then screened to identify
amultivariate subspace to study.We selected 20 features (genes) to
study based on P-value order. Using repeated random starts, we se-
lected K=3 k-means clustering based on the elbow heuristic to
define three prognosis groups based on the within/between sum
of squares criterion. The prognostic value of this classification is
described by standard Kaplan–Meier plot and the log-rank test.
We determined that 85% of random restarts led to statistically sig-
nificant log-rank tests for K=3 suggesting that significant addi-
tional prognostic information in the PDUI subspace above the
clinical data was stable as opposed to stochastic clustering.

Percentage of lost miRNA sites

Highly conserved miRNA binding sites and their genomic posi-
tions were downloaded from TargetScanHuman 7.2. This list,
along with DaPars prediction of genomic coordinates of lost
3′ UTRs was used to plot the number of genes that lose at least
one highly conserved miRNA binding site.

miRNA families preferentially associate with lost sites

To determine miRNAs associated with sites enriched in lost 3′

UTRs,miRNA target predictions and the cumulativeweighted con-
text++ scores (CWCS) were downloaded from TargetScanHuman
7.2. CWCS estimates the predicted cumulative repression for a
miRNA at the site. The lost miRNA binding sites in the shortened
3′ UTRs of PDAC patients were inferred fromDaPars predictions. A
weighted target site score was computed as the sum over all genes
with shortened 3′ UTRs in tumor, with the CWCS of each target
site for the miRNA multiplied by the normalized abundance of
the gene’s 3′-UTR form in which the predicted target site was pre-
sent. The fold change ( f ) of the sum of weighted target site scores
in lost 3′-UTR regions for PDAC tumor over normal was calculated
( f= score in tumor/score in normal). The labels of the miRNA tar-
get sites were permuted to assess the significance of the fold chan-
ge. One thousand such randomizations were performed and the
mean (m) and standard deviation (s) of the fold changes across
the randomized data sets was computed. The significance of the
fold change was computed in form of the Z-score defined as ( f−
m)/s. A lowerZ-score indicates that the loss inmiRNA binding sites
is higher than that expected by chance.

miRNA prognostic signature

We quantified the impact of APA-based loss of miRNA binding as
follows:

Xm,i = Sg (1− PDUIi,g )× Ag,m,

where Ag,m is an indicator function that the short versus long
3′ UTRof the gene g contains the binding site formiRNAm, the im-
pact to the ith person is Xm,i. We used Sure Independence
Screening (SIS) to search through all affected miRNAs and identify
features that were associatedwith survival univariately (Fan and Lv
2008). To study the multivariate effect, we reorganized cases using
the Euclidean distance between SIS selected features, visualized
with t-SNE, and defined clusters with model-based Gaussian clus-
tering using the BIC criterion to select cluster number. Survival dif-
ferences were tested across all groups by the log-rank test and were
visualized by Kaplan–Meier estimate.We performed the analysis of
deviance test of the nested Cox regressionmodel: clinical variables
versus clinical variables +miRNA clusters which was statistically
significant (P=0.02) suggesting that addition of miRNA clusters
improved the model. The pattern of loss of miRNA binding sites
across patient clusters was visualized for a subset of miRNAs in a
heatmap.

Experimental methods

Cell lines and general reagents

MIA PaCa-2 andHEK293 cells were purchased from ATCC and cul-
tured in DMEMmedia (CorningMT 10-013-CV) and 10% fetal bo-
vine serum. Suit2 cells were obtained from Dr. David Tuveson
(Cold Spring Harbor Laboratory). Cell lines were periodically veri-
fied to be mycoplasma free using the MycoAlert kit (Lonza LT07-
701). All transfections were carried out using Lipofectamine
3000 (Thermo Fisher Scientific L3000008) per the manufacturer’s
protocol.

3′ RACE assays
cDNA was generated from 1 µg RNA from MIA PaCa-2 as well as
Suit2 cell lines using SuperScript II Reverse Transcriptase
(Thermo Fisher Scientific 18064022) using the primer P: 5′-GAC
TCGAGTCGACATCGATTTTTTTTTTTTTTTTT-3′. To PCR amplify
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the 3′-UTR forms of candidate genes, a gene-specific forward prim-
er spanning the stop codon of the gene was used in conjunction
with a reverse primer P′: 5′-GACTCGAGTCGACATCG-3′ targeting
the adapter region introduced by primer P. The PCR mixture was
run on a 1.5% agarose gel and visualized using the ChemiDoc im-
aging system followed by analysis with Image Lab software
(Version 6.0.0, Bio-Rad). An identical cDNA generation and PCR
procedure was followed for RNA extracted from PDAC patient tu-
mor samples. RNA from PDAC patient samples were obtained
from Roswell Park Pathology Shared Resource. Approval of biospe-
cimen use was granted by the Roswell Park IRB.

Luciferase reporter assays

MIA PaCa-2 cells were seeded at ∼10,000 cells per well in a 96-well
white plate (Thermo Fisher Scientific 07-200-628). Three technical
replicates were plated for each condition. The cells were transfect-
ed the next day at ∼60% confluency with 200 ng of Renilla lucifer-
ase reporter plasmid (pIS1 containing the 3′-UTR region of
interest) (Supplemental Table S1) and 2 ng of firefly luciferase re-
porter control plasmid pIS0 per well. In cases in which the 3′-
UTR lengths between the short and long form were significantly
different, we ensured that equal molar amounts of the 3′-UTR con-
structs were transfected. Luciferase readings were measured 24 h
post-transfection with the Dual luciferase reporter assay system
(Promega E1910) using the Synergy H1 plate reader. The Renilla re-
porter reading was normalized to its corresponding firefly reading
in every well to control for transfection efficiency.

Statistical analyses

All experimental findings presented were replicated in three or
more independent experiments. Comparisons between two
groups were performed using unpaired t-test with Welch’s correc-
tion in GraphPad Prism 8. In general, P<0.05 was considered sig-
nificant, and the determined P-values are provided in the figure
legends. Asterisks in graphs denote statistically significant differ-
ences as described in figure legends.

Software availability

The code to preprocess RNA-seq data as well as the R code for all
analyses is provided as Supplemental Code and is also available
at GitHub (https://github.com/feiginlab/APA_PDA).
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